摘要
为解决虚拟电厂聚合分布式资源过程中,风光出力随机性、负荷波动及参数偏差等多源不确定性导致的调度失效、功率失衡及经济损失问题,构建嵌入多源不确定性建模与参数在线校正机制的多时间尺度自适应调度框架,基于两阶段鲁棒优化与改进量子遗传算法,日前通过鲁棒优化生成预调度方案,日内引入状态反馈机制,利用改进量子遗传算法滚动校正关键参数,构建闭环调度结构,通过仿真试验验证效果。结果表明,在风光出力与电热负荷预测存在显著偏差时,所提方法较传统确定性调度,实际运营收益提升约 3.2%,参数在线校正策略使系统平衡成本多数时段显著降低,降幅接近 90%。有效协同了调度方案鲁棒性、经济性与自适应能力,为虚拟电厂在高不确定性环境下安全经济运行提供技术路径。
Abstract
To address the scheduling failures, power imbalances, and economic losses in virtual power plants (VPPs) caused by multisource uncertainties—including stochastic renewable generation, load fluctuations, and parameter deviations—this paper develops a multi-timescale adaptive dispatch framework incorporating multi-source uncertainty modeling and online parameter correction. The framework employs two-stage robust optimization for day-ahead scheduling to generate a robust pre-dispatch plan, and introduces a state-feedback mechanism in the intra-day stage, where an improved quantum-inspired genetic algorithm is used to recursively correct critical parameters, thereby forming a closed-loop dispatch structure. Simulation experiments validate the effectiveness of the proposed approach. Results show that, under significant forecasting errors in renewable generation and electro-thermal loads, the method improves actual operational revenue by approximately 3.2% compared to conventional deterministic dispatch. Moreover, the online parameter correction strategy reduces system balancing costs by nearly 90% during most time periods. The framework effectively balances robustness, economic efficiency, and adaptability, offering a viable technical pathway for the secure and economical operation of VPPs under high uncertainty
关键词
虚拟电厂 /
多源不确定性 /
参数在线校正 /
多时间尺度调度 /
鲁棒优化 /
量子遗传算法
Key words
virtual power plant /
multi-source uncertainty /
online parameter correction /
multi-time scale scheduling /
robust optimization /
quantum genetic algorithm
霍非凡, 吕 游, 田禾露, 廖丛林.
基于多源不确定性与参数在线校正的虚拟电厂多时间尺度自适应调度方法
[J].
分布式能源. 0 https://doi.org/10.16513/J.2096-2185.DE.25100518
HUO Feifan, LÜ You, TIAN Helu, LIAO Conglin.
A Multi-Timescale Adaptive Dispatch Method for Virtual Power Plants Based on Multi-Source Uncertainty and Online Parameter Correction
[J].
Distributed Energy Resources. 0 https://doi.org/10.16513/J.2096-2185.DE.25100518
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}