低碳能源系统发展趋势与应用实践

郭婷婷, 曹蕃

分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 1-13.

PDF(11840 KB)
PDF(11840 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 1-13. DOI: 10.16513/j.2096-2185.DE.(2025)010-01-0001-13
综述

低碳能源系统发展趋势与应用实践

作者信息 +

Development Trend and Application of Low-Carbon Energy System

Author information +
文章历史 +

摘要

在积极践行“双碳”目标、构建新型能源体系和建设新型电力系统的背景下,加快构建更加灵活、清洁、可持续的低碳能源系统成为能源转型的必经之路。基于对能源生产供应体系所需进行的“五个转变”的分析,阐述了低碳能源系统的内涵特征,明确了其构建思路,并详细探讨了实现低碳能源系统所需关键技术的发展趋势与面临的挑战。在此基础上,从供给侧和需求侧角度列举了2个具体实践案例,并展望了低碳能源系统未来的发展趋势。

Abstract

In the context of actively implementing the " peak carbon dioxide emission and carbon neutrality" goal, building a new energy system and constructing a new power system, accelerating the construction of a more flexible, clean and sustainable low-carbon energy system has become the only way to energy transformation. Based on the analysis of the "five transformations" needed in the energy production and supply system, this paper expounds the connotation and characteristics of low-carbon energy system, clariifies its construction ideas, and discusses the development trends and challenges of key technologies needed to realize low-carbon energy system in detail. On this basis, two practical cases are listed from the perspective of supply side and demand side. Finally, the future development trend of low-carbon energy system is prospected.

关键词

能源转型 / 新型能源体系 / 低碳能源系统 / 数智能源 / 多能互补

Key words

energy transformation / new energy system / low-carbon energy system / digital energy / multi-energy complementarity

引用本文

导出引用
郭婷婷, 曹蕃. 低碳能源系统发展趋势与应用实践[J]. 分布式能源. 2025, 10(1): 1-13 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0001-13
Tingting GUO, Fan CAO. Development Trend and Application of Low-Carbon Energy System[J]. Distributed Energy Resources. 2025, 10(1): 1-13 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0001-13
中图分类号: TK01   

参考文献

[1]
习近平. 习近平: 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[EB/OL]. (2022-10-16). http://www.gov.cn/xinwen/2022-10/25/content_5721685.htm.
[2]
侯梅芳. 碳中和目标下中国能源转型和能源安全的现状、挑战与对策[J]. 西南石油大学学报(自然科学版), 2023, 45(2): 1-10.
摘要
人类社会在完成两次重要的能源转型之后,当前正在进行以碳中和目标为导向、旨在实现人类社会可持续发展的第三次能源转型。新形势下中国能源发展面临复杂形势和严峻挑战,既要加快推进能源低碳转型实现碳中和目标,又要牢牢守住能源安全底线。如何统筹好能源转型和能源安全,是中国能源高质量可持续发展面临的重大问题。研究认为:1)前两次能源转型均契合传统的经济发展规律,与工业革命相伴而生,能源作为普通生产要素,其结构在技术驱动下逐渐发生变革,正在进行中的第三次能源转型,核心动因不仅包括应对气候变化和保障能源安全,还包括人类社会可持续发展的战略驱动,需要多端发力完成。2)碳中和目标下中国能源转型面临能源消费总量偏大、碳排放量偏大、能源结构偏煤、国内油气产量偏少、油气对外依存度偏高及可再生能源发展偏弱等安全风险。3)碳中和目标下中国能源转型与能源安全应着力“三个加快”:充分发挥中国社会主义制度优势,从化石能源清洁化、可再生能源规模化及综合能源智慧化3方面加快构建新型能源体系,在煤炭、油气和可再生能源等领域加快科技创新,加快实施全面能源节约战略。
HOU Meifang. Current situation, challenges and counter-measures of China’s energy transformation and energy security under the goal of carbon neutrality[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2): 1-10.
[3]
邹才能, 马锋, 潘松圻, 等. 世界能源转型革命与绿色智慧能源体系内涵及路径[J]. 石油勘探与开发, 2023, 50(3): 633-647.
摘要
能源体系转型的实质是“能源革命”。以化石能源为主体的“资源主导”型能源体系发展至今,推动人类进步,但也引发能源危机与生态环境危机,与新一轮科技革命、产业变革和人类可持续发展的新需求不相适应,亟待研究和发展碳中和背景下的新型能源体系。在新能源、新电力、新储能“三新”为主体的“技术主导”绿色智慧能源新体系框架下,以鄂尔多斯盆地为代表的“超级能源盆地”理念将重塑未来能源勘探开发的理念与模式。鉴于世界能源的“六个不均”和中国“富煤、油气不足、新能源无限”资源禀赋,深入推进“中国能源革命”,坚持能源生产独立性、供给绿色性、储备安全性、消费高效性、管理智慧性、成本经济性的“六性原则”;强化“能源科技创新”,实施技术主导下的煤炭清洁化、稳油和增气、新能源提速、绿色与智慧“四大科创工程”;实现“能源转型”,加快绿色主导下的化石能源清洁化、新能源规模化、集中分布协同化、多能管理智慧化“四化发展”,推动中国能源结构“两个80%”互换,构建绿色智慧能源新体系。
ZOU Caineng, MA Feng, PAN Songqi, et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum Exploration and Development, 2023, 50(3): 633-647.
[4]
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
摘要
构建以新能源为主体的新型电力系统,既是我国电力系统转型升级的重要方向,也是实现碳达峰、碳中和目标的关键途径。本文分析了电力系统转型带来的变化、问题及挑战,阐述了新型电力系统的内涵、构建原则与思路;根据电力系统发展的技术特征、新能源接入规模,合理划分新型电力系统的发展阶段并针对性提出各阶段的发展建议。研究认为,新型电力系统以新能源为电能供给主体,可满足不断增长的清洁用电需求,兼具高度的安全性、开放性、适应性;相关系统构建是一项系统性工程,应遵循电力系统的技术演进规律与特征,充分利用成熟技术、存量系统并深入挖掘潜力,同步着力研发新兴技术,积极稳妥并循序渐进实施重大转型。
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.
[5]
国家能源局. 新型电力系统发展蓝皮书[R/OL]. 2023. https://www.nea.gov.cn/2023-06/02/c_1310724249.htm.
[6]
周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景和关键技术[J]. 中国电力企业管理, 2021(31): 14-17.
[7]
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
摘要
电力低碳转型对实现碳达峰、碳中和目标具有全局性意义。本文在电力碳预算评估的基础上构建深度低碳、零碳、负碳 3 类电力转型情景,研判电力需求等关键边界条件,构建路径规划优化模型;采用 GESP-V 软件包进行优化分析,确定不同情景下包含电源结构、电力碳排放、电力供应成本在内的电力低碳转型路径;探讨并剖析煤电发展定位、新能源发展利用、清洁能源多元化供应、电力平衡等实现电力系统低碳转型亟待解决的重大问题。研究建议,加强顶层设计,稳妥规划转型节奏,保障电力供应安全;加强绿色低碳重大科技攻关,统筹电力全链条技术与产业布局;优化完善利益平衡统筹兼顾的市场机制,加快建设绿色金融政策保障体系。通过政策、技术、机制协同,推动中长期我国电力低碳转型的高质量发展。
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14.

The low-carbon transformation of power sector is significant for achieving the goal of carbon peak and carbon neutrality in China. Based on the evaluation of power carbon budget, three power transformation scenarios of deep low-carbon, zero carbon, and negative carbon were built, the key boundary conditions such as power consumption demand were studied, and a path planning optimization model was established in the paper. Using the GESP-V software package for optimized analysis, the low-carbon transformation paths were determined for power structure, power carbon emissions, and power supply costs under different scenarios. The major issues that are critical for the low-carbon transformation of the power system were discussed, including coal power development, renewable energy development and utilization, diversified supply of clean energy, and electric power balance. Several suggestions were further proposed. Specifically, the top-level design should be strengthened to steadily plan the transformation pace, major low-carbon technologies should be developed to coordinate the overall technology and industrial layout, and the market mechanism with balanced interests should be improved while establishing a green finance policy system. The high-quality low-carbon transformation of China’s power sector in the medium and long term can be promoted through the coordination of policies, technologies, and mechanisms.

[8]
舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9.
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9.
[9]
辛保安. 新型电力系统构建方法论研究[J]. 新型电力系统, 2023(1): 1-18.
XIN Baoan. Research on the methodology of constructing new power systems[J]. New Type Power Systems, 2023(1): 1-18.
[10]
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing. Challenges and pro-spects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[11]
康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833.
[12]
发展改革委, 能源局. 关于推进电力源网荷储一体化和多能互补发展的指导意见[J]. 中华人民共和国国务院公报, 2021(12): 59-62.
[13]
曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网“源-网-荷-储” 协调优化运营模式及关键技术[J]. 电网技术, 2016, 40(1): 114-124.
ZENG Ming, YANG Yongqi, LIU Dunnan, et al. “Generation- grid-load-storage” coordinative optimal operation mode of energy Internet and key technologies[J]. Power System Technology, 2016, 40(1): 114-124.
[14]
周伏秋, 邓良辰, 冯升波, 等. 综合能源服务发展前景与趋势[J]. 中国能源, 2019, 41(1): 4-7,14.
ZHOU Fuqiu, DENG Liangchen, FENG Shengbo, et al. Prospects and trends of comprehensive energy service developmen[J]. Energy of China, 2019, 41(1): 4-7,14.
[15]
郭昆健, 高赐威, 严兴煜. 新型电力系统下虚拟电厂研究综述与展望[J]. 电力需求侧管理, 2024, 26(5): 49-57.
GUO Kunjian, GAO Ciwei, YAN Xingyu. Review and prospect of research on virtual power plant under the new power system[J]. Power Demand Side Management, 2024, 26(5): 49-57.
[16]
韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43(22): 8569-8592.
HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8592.
[17]
肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674.
XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al. Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.
[18]
杨修宇, 刘沛烨, 孙勇, 等. 考虑灵活性需求演化规律的灵活性资源动态规划方法[J]. 电力建设, 2023, 44(9): 3-12.
摘要
随着可再生能源装机规模快速增长,灵活性需求规律随之转变,同时电化学储能等灵活性资源技术、经济性也随之改善。如何在规划中兼顾灵活性需求演化规律与储能技术发展对提升系统灵活性与经济性至关重要。为此,文章开展了考虑灵活性需求演化规律的灵活性资源动态规划方法相关研究。首先,分析了可再生能源渗透率增长与灵活性供需间演化关系,揭示了多阶段灵活性资源规划的原理及影响因素;然后,考虑灵活性需求演化规律与储能技术经济性持续改善,构建了多阶段灵活性资源优化配置模型,并给出了模型的求解思路;最后在算例中兼顾未来储能技术经济性持续改善与火电机组逐步退出的双重成本,验证了多阶段灵活性资源优化配置方法的可行性和有效性,为未来风电的协调发展提供了指导性的建议。
YANG Xiuyu, LIU Peiye, SUN Yong, et al. Dynamic planning method for flexible resources considering evolution of flexibility requirements[J]. Electric Power Construction, 2023, 44(9): 3-12.

With the rapid growth of renewable energy installation capacity, the law for flexibility of demand changes, and the economy of flexible resources improve alongside technology, as in electrochemical energy storage. The method of balancing the evolution of flexibility requirements and development of energy storage technology during planning, is crucial in improving system flexibility and economy. Therefore, this study conducts research on the dynamic planning method of flexible resources, considering the evolution law on flexibility of demand. First, the evolutionary relationship between renewable energy penetration growth and flexible supply and demand is analyzed, and the principle and influencing factors of multi-stage flexible resource planning are revealed. Then, considering the evolution law on flexibility of demand and the continuous improvements in energy storage technology economy, a multi-stage flexible resource optimization allocation model is constructed to offer a solution. Finally, the feasibility and effectiveness of the multi-stage flexible resource optimization allocation method are verified by example, considering the continuous improvement of energy storage technology economy and the gradual withdrawal of thermal power units, which provides guidance for the coordinated development of wind power in the future.

[19]
WANG J, YOU S, ZONG Y, et al. Flexibility of combined heat and power plants: A review of technologies and operation strategies[J]. Applied Energy, 2019, 252: 113445.
[20]
刘云. 我国能源电力发展及火电机组灵活性改造综述[J]. 洁净煤技术, 2023, 29(S2): 319-327.
LIU Yun. Overview of energy and power system development and the flexibility retrofit of thermal power units in China[J]. Clean Coal Technology, 2023, 29(S2): 319-327.
[21]
毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2): 10-22.
MAO Cuiji, YU Xiongjiang, XU Jinliang, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2): 10-22.
[22]
樊启祥, 蒋敏华, 许世森, 等. 碳中和目标下新一代超高参数煤电机组技术体系[J]. 中国电机工程学报, 2024, 44(18): 7167-7178.
FAN Qixiang, JIANG Minhua, XU Shisen, et al. Technical systems of advanced ultra-supercritical coal-fired power units under the carbon neutralization target[J]. Proceedings of the CSEE, 2024, 44(18): 7167-7178.
[23]
王天堃, 刘天野, 乔加飞, 等. 超临界二氧化碳混合工质布雷顿循环研究进展[J/OL]. 发电技术,1-10[2024-09-22].
WANG Tiankun, LIU Tianye, QIAO Jiafei, et al. Research progress on supercritical CO2-based mixture brayton cycle[J/OL]. Power Generation Technology, 1-10[2024-09-22].
[24]
徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10.
XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10.
[25]
MECHERI M, LE MOULLEC Y. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771.
[26]
张一楠, 熊小鹤, 周寅聪, 等. CO2捕集、利用及封存技术研究进展[J/OL]. 煤炭学报,1-21[2024-09-22]. https://doi.org/10.13225/j.cnki.jccs.2024.1282.
ZHANG Yinan, XIONG Xiaohe, ZHOU Yincong, et al. Research progress of CO2 capture, utilization and storage technology[J/OL]. Journal of China Coal Society, 1-21[2024-09-22]. https://doi.org/10.13225/j.cnki.jccs.2024.1282.
[27]
WILBERFORCE T, OLABI A G, SAYED E T, et al. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761: 143203.
[28]
CESARO Z, IVES M, NAYAK-LUKE R, et al. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants[J]. Applied Energy, 2021, 282: 116009.
[29]
刘小伟, 雷乐, 周子健, 等. 双碳背景下燃煤电站掺氨燃烧研究进展与展望[J]. 中国电机工程学报, 2024, 44(18): 7221-7235.
LIU Xiaowei, LEI Le, ZHOU Zijian, et al. Research progress and prospect of ammonia-doped combustion in coal-fired power plants under the background of dual carbon[J]. Proceedings of the CSEE, 2024, 44(18): 7221-7235.
[30]
陈坤洋, 郭婷婷, 贾西部, 等. 脱硫废水烟道蒸发工艺协同脱汞效率研究[J]. 中国电力, 2018, 51(10): 139-144.
CHEN Kunyang, GUO Tingting, JIA Xibu, et al. Enhanced mercury removal technology in coal-fired power plants through desulfurization wastewater evaporation[J]. Electric Power, 2018, 51(10): 139-144.
[31]
曹蕃. 火电厂废水零排放技术研究进展[J]. 工业用水与废水, 2018, 49(3): 6-11.
CAO Fan. Research progress of wastewater zero discharge technology of thermal power plant[J]. Industrial Water & Wastewater, 2018, 49(3): 6-11.
[32]
MASAKAZU N, TOMO K, HIDEFUMI A, et al. Hydrogen-fired gas turbine targeting realization of CO2-free society[J]. Mitsubishi Heavy Industries Technical Review, 2018, 55(4):1-7.
[33]
王强, 郜志腾, 阿旺加措, 等. 全球高海拔地区风电利用现状综述[J]. 哈尔滨工程大学学报, 2024, 45(9): 1750-1760.
WANG Qiang, GAO Zhiteng, NGAWANG Gyatso, et al. Review of wind power utilization in global high-altitude areas[J]. Journal of Harbin Engineering University, 2024, 45(9): 1750-1760.
[34]
严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12.
摘要
近年来,在碳达峰目标与碳中和愿景下,海上风电在我国取得了长足的发展。分析了我国目前海上风电的发展现状与未来规划,对海上风电装机规模、新增机型以及采用的技术路线进行了汇总。重点介绍了海上风电基础型式、防腐技术和运维技术,其中,漂浮式海上风电是基础型式研究的重点,运维巡检和运维管理系统是风电运维技术研究的重点。通过分析海上风电的发展状况,整理了各项技术的主要技术路线和先进成果。最后,基于目前国内的技术发展现状及需求,对我国海上风电未来发展趋势进行展望。
YAN Xinrong, ZHANG Ningning, MA Kuichao, et al. Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 2024, 45(1): 1-12.

Under the carbon peak goal and carbon neutral vision, offshore wind power has made great progress in China in recent years. The current development status and future planning of offshore wind power in China were analyzed, and the installed capacity of offshore wind power, new models and adopted technical routes were summarized. The paper focused on the basic type, anti-corrosion technology, and operation and maintenance technology of offshore wind power. The floating offshore wind power was the focus of basic type research. The operation and maintenance inspection and operation and maintenance management system was the focus of wind power operation and maintenance technology research. By analyzing the development status of offshore wind power, the main technical routes and advanced achievements of each technology were sorted out. Finally, based on the current domestic technology development status and demand, the future development trend of China’s offshore wind power was prospected.

[35]
SOARES-RAMOS E P P, et al.DE OLIVEIRA-ASSIS L, SARRIAS-MENA R, Current status and future trends of offshore wind power in Europe[J]. Energy, 2020, 202: 117787.
[36]
陈俊帆, 赵生盛, 高天, 等. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
CHEN Junfan, ZHAO Shengsheng, GAO Tian, et al. High-efficiency monocrystalline silicon solar cells: Development trends and prospects[J]. Materials Reports, 2019, 33(1): 110-116.
[37]
LIANG T S, PRAVETTONI M, DELINE C, et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation[J]. Energy & Environmental Science, 2019, 12(1): 116-148.
[38]
AHMADI M H, GHAZVINI M, SADEGHZADEH M, et al. Solar power technology for electricity generation: A critical review[J]. Energy Science & Engineering, 2018, 6(5): 340-361.
[39]
刘德旭, 杨迎, 黄宏旭, 等. 新型电力系统大规模抽水蓄能调度运行与控制综述及展望[J]. 中国电机工程学报, 2025, 45(1):80-98.
LIU Dexu, YANG Ying, HUANG Hongxu, et al. An overview and outlook of the operation and control of large-scale pumped hydro storages in modern power systems[J]. Proceedings of the CSEE, 2025, 45(1):80-98.
[40]
陶星明, 陈太平. 新型电力系统中水力发电装备的发展趋势[J]. 新型电力系统, 2023, 1(3): 231-236.
TAO Xingming, CHEN Taiping. Development trends of hydropower equipment in new power systems[J]. New Type Power Systems, 2023, 1(3): 231-236.
[41]
KARAKOSTA C, PAPPAS C, MARINAKIS V, et al. Renewable energy and nuclear power towards sustainable development: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 187-197.
[42]
康俊杰, 赵春阳, 周国鹏, 等. 风光水火储多能互补示范项目发展现状及实施路径研究[J]. 发电技术, 2023, 44(3): 407-416.
摘要
风光水火储多能互补示范项目侧重从电源侧开发,利用风能、太阳能、水能、煤炭等多能源品种发电形成互补运行模式,可以有效解决弃风、弃光、弃水、限电等问题,促进可再生能源就近消纳,实现电力稳定送出,提高能源的综合利用效率。总结了多能互补的内涵及构建原则,梳理了首批多能互补示范项目的发展现状和存在的问题,并对多能互补项目不同模式的发展路径进行了详细分析。重点从风光资源的评估、新能源场址规划、总装机容量及最优电源配比、储能的优化配置、保障安全稳定的协调控制技术及项目的经济性评价指标等方面提炼出适合多能互补项目建设推广的一般流程及开发模式,最后从顶层设计、市场机制、运营管理等方面提出总结建议。
KANG Junjie, ZHAO Chunyang, ZHOU Guopeng, et al. Research on development status and implementation path of wind-solar-water-thermal-energy storage multi-energy comple-mentary demonstration project[J]. Power Generation Tech-nology, 2023, 44(3): 407-416.
[43]
刘楠, 康俊杰, 赵春阳. 多能互补能源基地开发模式及综合效益提升方法[J]. 中国电机工程学报, 2024, 44(4): 1339-1352.
LIU Nan, KANG Junjie, ZHAO Chunyang. Development model of multi-energy complementary energy base and comprehensive benefit enhancement method[J]. Proceedings of the CSEE, 2024, 44(4): 1339-1352.
[44]
张宁, 朱昊, 杨凌霄, 等. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633.
摘要
围绕“碳达峰、碳中和”目标,能源电力系统“源-网-荷-储”全环节低碳化面临新的要求和挑战,高比例可再生能源发电已成为必然趋势。考虑可再生能源发电的不确定性对电力系统安全稳定运行的影响,利用具备多能互补特性的虚拟电厂(virtual power plant,VPP)是改善该问题的有效途径。为此,提出一种多能互补虚拟电厂优化调度策略。首先,充分考虑多种能源之间的耦合关系,构建计及“源-网-荷-储”全环节的虚拟电厂运行机制;其次,根据所提运行机制,提出以低碳经济为目标的多能互补优化调度模型,通过对各类型装置进行协调调度,促进可再生能源的消纳;最后,以某地区含可再生能源发电在内的多能互补虚拟电厂为参考案例进行仿真分析,验证所提策略的有效性。
ZHANG Ning, ZHU Hao, YANG Lingxiao, et al. Optimal scheduling strategy of multi-energy complementary virtual power plant considering renewable energy consumption[J]. Power Generation Technology, 2023, 44(5): 625-633.

Focusing on the goal of carbon peak and carbon neutrality, the low-carbonization of the whole link of energy power system (i.e., source-network-load-storage) faces new requirements and challenges. The high proportion of renewable energy generation has become an inevitable trend. Considering the impact of the uncertainty of renewable energy generation on the safe and stable operation of the power system, the use of virtual power plant (VPP) with multi-energy complementary characteristics is a favourable way to solve this problem. Therefore, an optimal scheduling strategy of multi-energy complementary VPP was proposed. Firstly, taking into account the coupling relationship between multiple energy sources, a VPP operation mechanism that takes into account the entire source-grid-load-storage chain was constructed. Secondly, according to the proposed operation mechanism, a multi-energy complementary optimal dispatching model with low carbon economy as the goal was proposed to promote the consumption of renewable energy by coordinating the dispatching of various types of devices. Finally, the effectiveness of the proposed strategy was verified by simulating and analyzing a reference case of a multi-energy complementary VPP including renewable energy generation in a region.

[45]
吴瑊, 何冰琛, 张勋奎, 等. 荷随源动的电网友好型风光氢储大基地容量优化配置研究[J/OL]. 中国电机工程学报: 1-12 [2024-09-22].
WU Jian, HE Bingchen, ZHANG Xunkui, et al. Research on capacity optimization allocation of a grid-friendly large energy base containing wind power, photovoltaic and hydrogen energy storage whose load changes with the power supply[J/OL]. Proceedings of the CSEE:1- 12 [2024-09-22].
[46]
马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720-4732.
MA Ningning, XIE Xiaorong, HE Jingbo, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4720-4732.
[47]
路学刚, 朱欣春, 胡斌, 等. 基于等效简化和GPU的高比例新能源电网快速仿真系统[J]. 智慧电力, 2024, 52(4): 91-99.
LU Xuegang, ZHU Xinchun, HU Bin, et al. Fast simulation system of high proportion new energy grid based on equivalent simplification and GPU[J]. Smart Power, 2024, 52(4): 91-99.
[48]
张东辉, 陈新. 基于阻抗视角的新能源发电系统宽频振荡抑制技术综述[J/OL]. 中国电机工程学报: 1-20 [2024-09-22]. https://doi.org/10.13334/j.0258-8013.pcsee.231365
ZHANG Donghui, CHEN Xin. Overview of broadband oscillation mitigation of new energy generation power system based on impedance perspective[J/OL]. Proceedings of the CSEE, 1-20 [2024-09-22].https://doi.org/10.13334/j.0258-8013.pcsee.231365
[49]
宋祉慧, 田军见, 倪战士, 等. 考虑可再生能源不确定性的风光火储联合调度优化[J]. 洁净煤技术, 2024, 30(8): 117-127.
SONG Zhihui, TIAN Junjian, NI Zhanshi, et al. Optimization of combined wind-solar-thermal-storage system considering the uncertainty of renewable energy output[J]. Clean Coal Technology, 2024, 30(8): 117-127.
[50]
王振彪. 构建“电为核心” 的现代能源体系[J]. 分布式能源, 2020, 5(4): 1-7.
WANG Zhenbiao. Construction of modern energy system with electricity as the core[J]. Distributed Energy, 2020, 5(4): 1-7.
[51]
姚华, 黄云, 徐敬英, 等. 我国北方地区清洁供暖技术现状与问题探讨[J]. 中国科学院院刊, 2020, 35(9): 1177-1188.
YAO Hua, HUANG Yun, XU Jingying, et al. Technology status and discussion on challenges of clean heating in northern China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(9): 1177-1188.
[52]
唐伟. 电能替代实施现状及发展趋势预判[J]. 中国能源, 2020, 42(2): 35-38,47.
TANG Wei. Current situation analysis and development trend prediction of electric energy substitution[J]. Energy of China, 2020, 42(2): 35-38,47.
[53]
田立亭, 程林, 郭剑波, 等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术, 2020, 44(6): 2097-2108.
TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J]. Power System Technology, 2020, 44(6): 2097-2108.
[54]
徐慧慧, 田云飞, 缪猛, 等. 计及碳交易和需求响应的虚拟电厂低碳经济调度[J]. 智慧电力, 2023, 51(8): 1-7.
XU Huihui, TIAN Yunfei, MIAO Meng, et al. Low carbon economy dispatch of virtual power plants considering carbon trading and demand response[J]. Smart Power, 2023, 51(8): 1-7.
[55]
加鹤萍, 郭宇辰, 余涛, 等. 考虑出力偏差与风险控制的虚拟电厂收益分配策略[J]. 电力建设, 2024, 45(6): 27-36.
摘要
随着“双碳”目标的提出,分布式资源潜力不断被挖掘,能够有效聚合分布式资源的虚拟电厂逐渐受到广泛关注。虚拟电厂通过市场化交易保障供需平衡,为进一步提升电力保供能力,应降低虚拟电厂的出力偏差并提高其风险控制水平。针对此问题,文章首先对虚拟电厂中分布式资源的特性进行分析;其次,基于条件风险价值理论和合作博弈理论,考虑虚拟电厂中分布式资源的出力偏差与风险控制,提出基于改进沙普利值法的虚拟电厂收益分配策略;最后,通过算例分析验证所提收益分配策略的有效性。通过条件风险价值定量分析分布式资源在不同风险水平、出力偏差以及贡献度场景下的虚拟电厂收益分配机制。算例分析表明,所提出的合作交易策略能够提高分布式资源的收益,且能有效控制新能源出力偏差并平抑其参与市场的风险,在实现多方共赢的情况下提高电力系统的供应能力。
JIA Heping, GUO Yuchen, YU Tao, et al. Profit distribution strategy of virtual power plants considering output deviation and risk control[J]. Electric Power Construction, 2024, 45(6): 27-36.
With the proposal of a dual-carbon target, the potential of distributed energy resources (DERs) has been explored. Virtual power plants (VPPs) that effectively aggregate DERs have received attention. VPPs promote the balance between supply and demand through market trading. To further improve the power supply capability, the output deviation of VPPs should be reduced, and the risk control level should be improved. In this study, the characteristics of DERs aggregated in VPPs were analyzed. Then, based on the theories of conditional value-at-risk and cooperative game, a profit distribution method was designed by improving the Shapley value method considering the output deviations and risk control of DERs in VPPs. Finally, a case study was conducted to verify the rationality of the proposed profit distribution strategy. This study also quantitatively analyzed the revenue allocation mechanism of VPPs under different risk levels, output deviations, and contribution scenarios of DERs using the conditional value-at-risk theory. The case study demonstrates that the proposed cooperative trading strategies can improve the revenue of DERs and effectively control their output deviations. It can also suppress the risk of DERs participating in the electricity market, thereby improving the supply capacity of the power system in a win-win situation for all parties.
[56]
王小君, 窦嘉铭, 刘曌, 等. 可解释人工智能在电力系统中的应用综述与展望[J]. 电力系统自动化, 2024, 48(4): 169-191.
WANG Xiaojun, DOU Jiaming, LIU Zhao, et al. Review and prospect of explainable artificial intelligence and its application in power systems[J]. Automation of Electric Power Systems, 2024, 48(4): 169-191.
[57]
王继业, 蒲天骄, 仝杰, 等. 能源互联网智能感知技术框架与应用布局[J]. 电力信息与通信技术, 2020, 18(4): 1-14.
WANG Jiye, PU Tianjiao, TONG Jie, et al. Intelligent perception technology framework and application layout of energy Internet[J]. Electric Power Information and Commu-nication Technology, 2020, 18(4): 1-14.
[58]
刘吉臻, 王庆华, 房方, 等. 数据驱动下的智能发电系统应用架构及关键技术[J]. 中国电机工程学报, 2019, 39(12): 3578-3587.
LIU Jizhen, WANG Qinghua, FANG Fang, et al. Data-driven-based application architecture and technologies of smart power generation[J]. Proceedings of the CSEE, 2019, 39(12): 3578-3587.
[59]
王伟亮, 王丹, 贾宏杰, 等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36(12): 3292-3306.
WANG Weiliang, WANG Dan, JIA Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy Internet[J]. Proceedings of the CSEE, 2016, 36(12): 3292-3306.
[60]
邢家维, 程艳, 于芃, 等. 基于合作博弈的多园区互联综合能源系统低碳经济调度[J]. 山东电力技术, 2024, 51(5): 19-29.
XING Jiawei, CHENG Yan, YU Peng, et al. Low-carbon economic scheduling of multiple interconnected park-level integrated energy systems based on cooperative game[J]. Shandong Electric Power, 2024, 51(5): 19-29.
[61]
李亚莎, 张永蘅, 陈俊璋, 等. 计及氢能高效利用和热电灵活输出的综合能源系统源荷灵活运行策略[J]. 广东电力, 2024, 37(4): 49-61.
LI Yasha, ZHANG Yongheng, CHEN Junzhang, et al. Flexible operation strategy for source and load of integrated energy system considering efficient utilization of hydrogen energy and flexible thermal and electric output[J]. Guangdong Electric Power, 2024, 37(4): 49-61.
[62]
岳文全, 姚方, 文福拴. 考虑光热电站的电热氢综合能源系统协调优化策略[J]. 分布式能源, 2023, 8(4): 29-39.
YUE Wenquan, YAO Fang, WEN Fushuan. Coordinated optimization strategy for electric-heat-hydrogen integrated energy system considering concentrating solar power[J]. Distributed Energy, 2023, 8(4): 29-39.

基金

中国大唐集团有限公司科技项目(DTJJ-2021-10029)

PDF(11840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/