计及电价风险的负荷聚合商双层优化购电策略

喻滨, 林健, 吴文洁, 马雨彤, 王玲玲, 蒋传文

分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 43-52.

PDF(2549 KB)
PDF(2549 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 43-52. DOI: 10.16513/j.2096-2185.DE.(2025)010-01-0043-10
学术研究

计及电价风险的负荷聚合商双层优化购电策略

作者信息 +

Bi-Level Optimizing Power Purchase Strategies for Load Aggregators Considering Electricity Price Risks

Author information +
文章历史 +

摘要

随着可再生能源占比的持续增长与负荷中心电网峰谷差日益显著,分布式资源的开发与利用已成为研究热点,催生了产消者及负荷聚合商等新兴主体的出现。鉴于各利益主体拥有差异化的优化目标,构建了以负荷聚合商作为售电主体参与电力市场的双层优化模型。首先,引入产消者需求响应机制,形成主从博弈框架并利用Karush-Kuhn tucker(KKT)条件,将双层模型的下层目标及约束整合至上层,实现统一求解。其次,引入条件风险价值(conditional value at risk, CVaR)方法以量化电价不确定性对负荷聚合商购电策略的风险影响。最后,通过实证算例分析得出:该机制能有效激励用户侧可调资源参与系统灵活性调节,促进负荷聚合商与产消者间的双赢合作格局。

Abstract

With the continuous growth of the proportion of renewable energy and the increasingly significant peak-valley difference in the load center grid, the development and utilization of distributed resources has become a research hotspot, which promotes the emergence of new entities such as producers and consumers and load aggregators. In view of the different optimization objectives of each stakeholder, this paper constructed a bi-level optimization model with the load aggregator as the electricity seller to participate in the electricity market. Firstly, the demand response mechanism of producers was introduced to form the master-slave game framework, and Karush-Kuhn tucker (KKT) conditions were used to integrate the lower level goals and constraints of the two-level model to the upper level to achieve a unified solution. Secondly, the conditional value at risk (CVaR) method was introduced to quantify the risk impact of electricity price uncertainty on the power purchasing strategy of load aggregators. Finally, the empirical example analysis shows that the mechanism can effectively encourage the user side adjustable resources to participate in the flexibility adjustment of the system, and promote the win-win cooperation pattern between the load aggregator and the producer and consumer.

关键词

负荷聚合商 / 产消者 / 主从博弈 / Karush-Kuhn tucker(KKT) / 条件风险价值(CVaR)

Key words

load aggregator / producer and consumer / master-slave game / Karush-Kuhn tucker(KKT) / conditional value at risk (CVaR)

引用本文

导出引用
喻滨, 林健, 吴文洁, . 计及电价风险的负荷聚合商双层优化购电策略[J]. 分布式能源. 2025, 10(1): 43-52 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0043-10
Bin YU, Jian LIN, Wenjie WU, et al. Bi-Level Optimizing Power Purchase Strategies for Load Aggregators Considering Electricity Price Risks[J]. Distributed Energy Resources. 2025, 10(1): 43-52 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0043-10
中图分类号: TK01;TM732   

参考文献

[1]
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing. Challenges and pro-spects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2]
宋永华, 林今, 胡泽春, 等. 能源局域网: 物理架构、运行模式与市场机制[J]. 中国电机工程学报, 2016, 36(21): 5776-5787, 6020.
SONG Yonghua, LIN Jin, HU Zechun, et al. Energy distribution network: Infrastructure, operation mode and market mechanism[J]. Proceedings of the CSEE, 2016, 36(21): 5776-5787, 6020.
[3]
朱西平, 付迁, 文红, 等. 区块链视角下多能源主体储能优化配置模型[J]. 电力自动化设备, 2020, 40(8): 47-56.
ZHU Xiping, FU Qian, WEN Hong, et al. Optimal allocation model of multi-energy entity energy storage from perspective of blockchain[J]. Electric Power Automation Equipment, 2020, 40(8): 47-56.
[4]
王善磊, 孙国强, 吴晨, 等. 基于集中-分散交易机制的多产消者两阶段鲁棒优化模型[J]. 电力自动化设备, 2022, 42(5): 175-182.
WANG Shanlei, SUN Guoqiang, WU Chen, et al. Two-stage robust optimization model of multiple prosumers based on centralized-decentralized trading mechanism[J]. Electric Power Automation Equipment, 2022, 42(5): 175-182.
[5]
胡俊杰, 王坤宇, 艾欣, 等. 交互能源: 实现电力能源系统平衡的有效机制[J]. 中国电机工程学报, 2019, 39(4): 953-966.
HU Junjie, WANG Kunyu, AI Xin, et al. Transactive energy: An effective mechanism for balancing electric energy system[J]. Proceedings of the CSEE, 2019, 39(4): 953-966.
[6]
陈启鑫, 王克道, 陈思捷, 等. 面向分布式主体的可交易能源系统: 体系架构、机制设计与关键技术[J]. 电力系统自动化, 2018, 42(3): 1-7,31.
CHEN Qixin, WANG Kedao, CHEN Sijie, et al. Transactive energy system for distributed agents: Architecture, mechanism design and key technologies[J]. Automation of Electric Power Systems, 2018, 42(3): 1-7,31.
[7]
VALERO S, ORTIZ M, SENABRE C, et al. Methods for customer and demand response policies selection in new electricity markets[J]. IET Generation, Transmission & Distribution, 2007, 1(1): 104-110.
[8]
王宣元, 刘敦楠, 刘蓁, 等. 泛在电力物联网下虚拟电厂运营机制及关键技术[J]. 电网技术, 2019, 43(9): 3175-3183.
WANG Xuanyuan, LIU Dunnan, LIU Zhen, et al. Operation mechanism and key technologies of virtual power plant under ubiquitous Internet of Things[J]. Power System Technology, 2019, 43(9): 3175-3183.
[9]
关舒丰, 王旭, 蒋传文, 等. 基于可控负荷响应性能差异的虚拟电厂分类聚合方法及辅助服务市场投标策略研究[J]. 电网技术, 2022, 46(3): 933-944.
GUAN Shufeng, WANG Xu, JIANG Chuanwen, et al. Classification and aggregation of controllable loads based on different responses and optimal bidding strategy of VPP in ancillary market[J]. Power System Technology, 2022, 46(3): 933-944.
[10]
KARDAKOS E G, SIMOGLOU C K, BAKIRTZIS A G. Optimal offering strategy of a virtual power plant: A stochastic bi-level approach[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 794-806.
[11]
OIKONOMOU K, PARVANIA M, KHATAMI R. Deli-verable energy flexibility scheduling for active distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 655-664.
[12]
高赐威, 张良杰, 杨晓梅. 中央空调负荷聚合及平抑风电出力波动研究[J]. 中国电机工程学报, 2017, 37(11): 3184-3191,3373.
GAO Ciwei, ZHANG Liangjie, YANG Xiaomei. Research on load aggregation of central air conditioning and its participation in the operation of power system[J]. Proceedings of the CSEE, 2017, 37(11): 3184-3191, 3373.
[13]
张怡冰, 刘其辉, 洪晨威, 等. 基于模糊控制的区域电动汽车入网充放电调度策略[J]. 电力自动化设备, 2019, 39(7): 147-153.
ZHANG Yibing, LIU Qihui, HONG Chenwei, et al. Charging and discharging dispatch strategy of regional V2G based on fuzzy control[J]. Electric Power Automation Equipment, 2019, 39(7): 147-153.
[14]
张开宇. 智能电网环境下负荷聚合商的市场化交易策略研究[D]. 上海: 上海交通大学, 2015.
ZHANG Kaiyu. Research on market-oriented trading strategy of load aggregator in smart grid environment[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[15]
刘金朋, 刘胡诗涵, 张雨菲, 等考虑居民用户可调节潜力的负荷聚合商日前投标决策优化模型研究[J]. 智慧电力, 2024, 52(2):71-78,122.
LIU Jinpeng, LIU Hushihan, ZHANG Yufei, et al. Day-ahead bidding decision optimization model of load aggregators considering adjustable potential of residential users[J]. Smart Power, 2024, 52(2):71-78,122.
[16]
张开宇, 宋依群, 严正. 考虑用户违约可能的负荷聚合商储能配置策略[J]. 电力系统自动化, 2015, 39(17): 127-133.
ZHANG Kaiyu, SONG Yiqun, YAN Zheng. Energy storage capacity optimization for load aggregators considering probability of demand response resources' breach[J]. Automation of Electric Power Systems, 2015, 39(17): 127-133.
[17]
李博嵩, 王旭, 蒋传文, 等. 广泛负荷聚集商市场策略建模及风险效益分析[J]. 电力系统自动化, 2018, 42(16): 119-126.
LI Bosong, WANG Xu, JIANG Chuanwen, et al. Market strategy modeling and risk profit analysis of demand-side resource aggregator[J]. Automation of Electric Power Systems, 2018, 42(16): 119-126.
[18]
朱永灿, 石琳, 褚夏永, 等. 面向负荷聚合商的工业用户调峰潜力评估方法研究[J]. 广东电力, 2023, 36(9):17-25.
ZHU Yongcan, SHI Lin, CHUXiayong, et al. Research on peaking potential evaluation method of industrial enterprises for load aggregators[J]. Guangdong Electric Power, 2023, 36(9):17-25.
[19]
刘军, 李凌阳, 吴梦凯, 等. 分布式抽水蓄能电站与新能源发电联合参与现货市场的两阶段优化运行策略[J]. 浙江电力, 2023, 42(2): 50-58.
LIU Jun, LI Lingyang, WU Mengkai, et al. A two-stage optimal operation strategy of distributed pumped storage power plant and new energy power generation jointly participating in spot market[J]. Zhejiang Electric Power, 2023, 42(2): 50-58.
[20]
麻秀范, 余思雨, 朱思嘉, 等. 基于多因素改进Shapley的虚拟电厂利润分配[J]. 电工技术学报, 2020, 35(S2): 585-595.
MA Xiufan, YU Siyu, ZHU Sijia, et al. Profit allocation to virtual power plant members based on improved multifactor shapley value method[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 585-595.
[21]
马永翔, 马少洁, 闫群民, 等. 虚拟电厂与电动汽车用户的主从博弈定价策略[J/OL]. 华北电力大学学报(自然科学版), 1-10 [2024-06-10]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html.
MA Yongxiang, MA Shaojie, YAN Qunmin, et al. Master-slave game pricing strategy for virtual power plants and electric vehicle users[J/OL]. Journal of North China Electric Power University (Natural Science Edition):1-10 [2024-06-10]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230822.1034.006.html.
[22]
张衡, 张沈习, 程浩忠, 等. Stackelberg博弈在电力市场中的应用研究综述[J]. 电工技术学报, 2022, 37(13): 3250-3262.
ZHANG Heng, ZHANG Shenxi, CHENG Haozhong, et al. A state-of-the-art review on Stackelberg game and its applications in power market[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3250-3262.
[23]
匡熠, 王秀丽, 王建学, 等. 基于stackelberg博弈的虚拟电厂能源共享机制[J]. 电网技术, 2020, 44(12): 4556-4564.
KUANG Yi, WANG Xiuli, WANG Jianxue, et al. Virtual power plant energy sharing mechanism based on Stackelberg game[J]. Power System Technology, 2020, 44(12): 4556-4564.
[24]
刘春蕾, 庞鹏飞, 石纹赫, 等. 计及碳中和效益及清洁能源消纳的虚拟电厂双层协同优化调度[J]. 供用电, 2021, 38(9): 19-27.
LIU Chunlei, PANG Pengfei, SHI Wenhe, et al. Taking into account carbon neutrality benefit and clean energy consumption of virtual power plant two-layer cooperative optimization dispatching[J]. Distribution & Utilization, 2021, 38(9): 19-27.
[25]
任洪波, 王楠, 吴琼, 等. 考虑阶梯型碳交易的多负荷聚合商协同优化调度与成本分配[J]. 电力建设, 2024, 45(2): 171-182.
摘要
可再生能源的大规模渗透给电力系统的稳定运行带来极大挑战。在供需两侧双重不确定性叠加驱动下,基于终端柔性负荷的需求响应资源亟待挖掘。考虑不同类型用户负荷差异化特性,引入基于合作共赢的多类型负荷聚合商,基于异类负荷响应行为互补特点参与电力系统灵活调度;同时,赋予各负荷聚合商碳交易集成商的双重身份进入碳交易市场,采用预测电负荷法为系统无偿分配碳排放配额,构建奖惩阶梯型碳交易模型。以多个负荷聚合商合作联盟运营成本之和最小为目标,构建多聚合商间交互合作的日前优化模型并进行求解;引入合作博弈Shapley值法,根据各参与者对合作联盟运营的贡献度,进行成本分摊。结果表明,合作运营机制下,联盟整体和个体的运营成本及碳排放量均大幅降低。
REN Hongbo, WANG Nan, WU Qiong, et al. Collaborative optimal scheduling and cost allocation of multiload aggregator considering ladder-type carbon trading[J]. Electric Power Construction, 2024, 45(2): 171-182.

The large-scale penetration of renewable energy sources poses significant challenges to the stable operation of power systems. Driven by double uncertainties on both the supply and demand sides, demand response resources based on terminal flexible loads need to be explored. Considering the load differentiation characteristics of different types of users, multitype load aggregators based on cooperation and win-win were introduced. Flexible dispatching of the power system was performed based on the complementary characteristics of the heterogeneous load response behaviors. Moreover, each load aggregator was assigned the dual status of a carbon trading integrator to enter the carbon trading market. A carbon trading model based on a reward-punishment ladder was constructed using the electricity load forecasting method to allocate carbon emission quotas for a system free of charge. Based on this, to minimize the sum of the operating costs of a cooperative alliance of multiple load aggregators, a pre-day optimization model of the interaction and cooperation among multiple aggregators was developed and solved. The Shapley value method was introduced for the cooperative game, and the cost was shared according to the contribution of each participant to the operation of the cooperative alliance. The results show that the overall and individual operational costs and the carbon emissions of the alliance are significantly reduced under the cooperative operation mechanism.

[26]
谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32-44.
TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. Bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55(10): 32-44.

基金

英大长安保险经纪有限公司上海分公司科研项目(大规模新能源市场交易风险评估及保障机制研究)

PDF(2549 KB)

Accesses

Citation

Detail

段落导航
相关文章

/