PDF(11487 KB)
PDF(11487 KB)
PDF(11487 KB)
基于多源预报动态聚类的分布式光伏集群短期功率预测
Short-Term Power Prediction of Distributed Photovoltaic Clusters Based on Dynamic Clustering of Multi-Source Forecasts
分布式光伏电站功率的精准预测对于解决其出力不确定性至关重要。分布式光伏具有数量众多且地理位置分布较为分散的特点,若对每个分布式光伏电站进行功率预测系统配置,将会带来很高的运行成本,为此提出一种基于多源预报动态聚类的分布式光伏集群短期功率预测方法。首先,将预测日的当地公共天气预报信息进行数字编码,并将编码信息与本地区数值天气预报(numerical weather prediction,NWP)数据通过改进自编码器进行特征提取,实现多源预报数据融合;其次,以预测日的多源预报数据融合后的特征作为聚类特征,利用自组织映射(self-organizing mapping,SOM)网络聚类来实现集群的动态划分;最后,通过1维卷积神经网络(1D convolutional neural network,1DCNN)进行集群预测,并将集群预测结果累加实现区域分布式光伏的功率预测。结果表明,所提方法可以得到较为精确的预测精度和更可靠的预测效果。
Accurate power forecasting for distributed photovoltaic (PV) power plants is essential to address output uncertainty. Distributed PV is characterized by a large number and geographical distribution, if a power prediction system is configured for each distributed PV plant, it will bring high operating costs. For this reason, a short-term power prediction method for distributed PV clusters based on dynamic clustering of multi-source forecasts is proposed. Firstly, the local public weather forecast information of the forecast day is digitally encoded, and the encoded information is fused with the numerical weather prediction (NWP) data of the region through an improved self-encoder for feature extraction to achieve the fusion of multi-source forecast data; Secondly, the fused features of the multi-source forecast data of the forecast day are taken as the clustering features, and self-organizing mapping (SOM) network clustering is utilized to realize the dynamic division of the clusters; Finally, the clusters are predicted by the 1D convolutional neural network (1DCNN), and the cluster prediction results are accumulated to achieve the power prediction of regional distributed photovoltaic. The results show that the proposed method can obtain more accurate and reliable prediction.
分布式光伏集群 / 神经网络 / 动态聚类 / 短期功率预测
distributed photovoltaic clusters / neural networks / dynamic clustering / short-term power prediction
| [1] |
王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3):46-52.
|
| [2] |
董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
|
| [3] |
吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36(8): 1-7.
|
| [4] |
邵尹池, 袁绍军, 孙荣富, 等. 基于空间相关性的分布式光伏实用化功率预测及误差分析[J]. 中国电力, 2021, 54(7): 185-191.
|
| [5] |
杨锡运, 马文兵, 彭琰, 等. 基于组合神经网络的分布式光伏超短期功率预测方法[J]. 热力发电, 2023, 52(8): 162-171.
|
| [6] |
刘晓艳, 王珏, 姚铁锤, 等. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37(7): 1800-1809.
|
| [7] |
张童彦, 廖清芬, 唐飞, 等. 基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J]. 中国电机工程学报, 2023, 43(20): 7929-7940.
|
| [8] |
赵龙, 杨波, 卢志鹏, 等. 基于谱聚类和AM-LSTM的分布式光伏集群超短期预测方法[J]. 供用电, 2023, 40(7): 10-17.
|
| [9] |
程礼临, 臧海祥, 卫志农, 等. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7465.
|
| [10] |
卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48(5): 1943-1951.
|
| [11] |
乔颖, 孙荣富, 丁然, 等. 基于数据增强的分布式光伏电站群短期功率预测(二):网格化预测[J]. 电网技术, 2021, 45(6): 2210-2218.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
王建仁, 马鑫, 段刚龙. 改进的K-means聚类k值选择算法[J]. 计算机工程与应用, 2019, 55(8): 27-33.
空间聚类算法中,聚类的效果在很大程度上受制于最佳[k]值的选择。典型的[K]-均值算法中,聚类数[k]需要事先确定,但在实际情况中[k]的取值很难确定。针对手肘法在确定[k]值的过程中存在的“肘点”位置不明确问题,基于指数函数性质、权重调节、偏执项和手肘法基本思想,提出了一种改进的[k]值选择算法ET-SSE算法。通过多个UCI数据集和[K]-means聚类算法对该算法进行实验,结果表明,使用该[k]值选择算法相比于手肘法能更加快速且准确地确定[k]值。
In spatial clustering algorithms, the effect of clustering depends to a large extent on the choice of the best [k] value. In the typical [K]-means algorithm, the [k] value of clusters needs to be determined in advance, but in actual cases, the value of [k] is difficult to determine. The paper proposes an improved [k]-value selection algorithm, ET-SSE, based on the nature of exponential function, weight adjustment, bias and Elbow Method for the “elbow-point” ambiguity in the process of determining the [k]-value. The algorithm is tested by multiple UCI data sets and [K]-means clustering algorithm. The results show that the [k]-value selection algorithm can determine the value of key more accurately than the Elbow Method.
|
| [17] |
欧阳卫年, 赵紫昱, 陈渊睿. 自样本特征构造的1DCNN-BiLSTM网侧光伏功率预测[J]. 电力系统及其自动化学报, 2024, 36(3): 151-158.
|
| [18] |
|
/
| 〈 |
|
〉 |