基于多源预报动态聚类的分布式光伏集群短期功率预测

赵雪锋, 张宇宁, 詹巍, 李明烜, 李艳军, 杨锡运

分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 62-71.

PDF(11487 KB)
PDF(11487 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 62-71. DOI: 10.16513/j.2096-2185.DE.(2025)010-01-0062-10
学术研究

基于多源预报动态聚类的分布式光伏集群短期功率预测

作者信息 +

Short-Term Power Prediction of Distributed Photovoltaic Clusters Based on Dynamic Clustering of Multi-Source Forecasts

Author information +
文章历史 +

摘要

分布式光伏电站功率的精准预测对于解决其出力不确定性至关重要。分布式光伏具有数量众多且地理位置分布较为分散的特点,若对每个分布式光伏电站进行功率预测系统配置,将会带来很高的运行成本,为此提出一种基于多源预报动态聚类的分布式光伏集群短期功率预测方法。首先,将预测日的当地公共天气预报信息进行数字编码,并将编码信息与本地区数值天气预报(numerical weather prediction,NWP)数据通过改进自编码器进行特征提取,实现多源预报数据融合;其次,以预测日的多源预报数据融合后的特征作为聚类特征,利用自组织映射(self-organizing mapping,SOM)网络聚类来实现集群的动态划分;最后,通过1维卷积神经网络(1D convolutional neural network,1DCNN)进行集群预测,并将集群预测结果累加实现区域分布式光伏的功率预测。结果表明,所提方法可以得到较为精确的预测精度和更可靠的预测效果。

Abstract

Accurate power forecasting for distributed photovoltaic (PV) power plants is essential to address output uncertainty. Distributed PV is characterized by a large number and geographical distribution, if a power prediction system is configured for each distributed PV plant, it will bring high operating costs. For this reason, a short-term power prediction method for distributed PV clusters based on dynamic clustering of multi-source forecasts is proposed. Firstly, the local public weather forecast information of the forecast day is digitally encoded, and the encoded information is fused with the numerical weather prediction (NWP) data of the region through an improved self-encoder for feature extraction to achieve the fusion of multi-source forecast data; Secondly, the fused features of the multi-source forecast data of the forecast day are taken as the clustering features, and self-organizing mapping (SOM) network clustering is utilized to realize the dynamic division of the clusters; Finally, the clusters are predicted by the 1D convolutional neural network (1DCNN), and the cluster prediction results are accumulated to achieve the power prediction of regional distributed photovoltaic. The results show that the proposed method can obtain more accurate and reliable prediction.

关键词

分布式光伏集群 / 神经网络 / 动态聚类 / 短期功率预测

Key words

distributed photovoltaic clusters / neural networks / dynamic clustering / short-term power prediction

引用本文

导出引用
赵雪锋, 张宇宁, 詹巍, . 基于多源预报动态聚类的分布式光伏集群短期功率预测[J]. 分布式能源. 2025, 10(1): 62-71 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0062-10
Xuefeng ZHAO, Yuning ZHANG, Wei ZHAN, et al. Short-Term Power Prediction of Distributed Photovoltaic Clusters Based on Dynamic Clustering of Multi-Source Forecasts[J]. Distributed Energy Resources. 2025, 10(1): 62-71 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0062-10
中图分类号: TK51   

参考文献

[1]
王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3):46-52.
WANG Haiyan, LIU Jiakang, DENG Yaping. Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J]. Smart Power, 2023, 51(3):46-52.
[2]
董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
DONG Cun, WANG Zheng, BAI Jieyu, et al. Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High Voltage Technology, 2023, 49(7): 2938-2951.
[3]
吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36(8): 1-7.
WU Shuo. Review of power forecasting methods of photo-voltaic power generation system[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(8): 1-7.
[4]
邵尹池, 袁绍军, 孙荣富, 等. 基于空间相关性的分布式光伏实用化功率预测及误差分析[J]. 中国电力, 2021, 54(7): 185-191.
SHAO Yinchi, YUAN Shaojun, SUN Rongfu, et al. Practical method and error analysis for distributed photovoltaic power prediction based on spatial correlation[J]. Electric Power, 2021, 54(7): 185-191.
[5]
杨锡运, 马文兵, 彭琰, 等. 基于组合神经网络的分布式光伏超短期功率预测方法[J]. 热力发电, 2023, 52(8): 162-171.
YANG Xiyun, MA Wenbing, PENG Yan, et al. Distributed photovoltaic ultra-short-term power prediction method based on combined neural network[J]. Thermal Power Generation, 2023, 52(8): 162-171.
[6]
刘晓艳, 王珏, 姚铁锤, 等. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37(7): 1800-1809.
LIU Xiaoyan, WANG Jue, YAO Tiechui, et al. Ultra short-term distributed photovoltaic power prediction based on satellite remote sensing[J]. Transactions of China Elec-trotechnical Society, 2022, 37(7): 1800-1809.
[7]
张童彦, 廖清芬, 唐飞, 等. 基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J]. 中国电机工程学报, 2023, 43(20): 7929-7940.
ZHANG Tongyan, LIAO Qingfen, TANG Fei, et al. Wide-area distributed photovoltaic power forecast method based on meteorological resource interpolation and transfer learning[J]. Proceedings of the CSEE, 2023, 43(20): 7929-7940.
[8]
赵龙, 杨波, 卢志鹏, 等. 基于谱聚类和AM-LSTM的分布式光伏集群超短期预测方法[J]. 供用电, 2023, 40(7): 10-17.
ZHAO Long, YANG Bo, LU Zhipeng, et al. Ultra-short-term cluster distributed photovoltaic power prediction method based on spectral clustering and AM-LSTM[J]. Distribution & Utilization, 2023, 40(7): 10-17.
[9]
程礼临, 臧海祥, 卫志农, 等. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7465.
CHENG Lilin, ZANG Haixiang, WEI Zhinong, et al. Ultra-short-term forecasting of regional photovoltaic power generation considering multispectral satellite remote sensing data[J]. Proceedings of the CSEE, 2022, 42(20): 7451-7465.
[10]
卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48(5): 1943-1951.
LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Technology, 2022, 48(5): 1943-1951.
[11]
乔颖, 孙荣富, 丁然, 等. 基于数据增强的分布式光伏电站群短期功率预测(二):网格化预测[J]. 电网技术, 2021, 45(6): 2210-2218.
QIAO Ying, SUN Rongfu, DING Ran, et al. Distributed photovoltaic station cluster short-term power forecasting part II: Gridding prediction[J]. Power System Technology, 2021, 45(6): 2210-2218.
[12]
LI P, PEI Y, LI J. A comprehensive survey on design and application of autoencoder in deep learning[J]. Applied Soft Computing, 2023, 138:110176.
[13]
FANAI H, ABBASIMEHR H. A novel combined approach based on deep autoencoder and deep classifiers for credit card fraud detection[J]. Expert Systems with Applications, 2023,217: 119562.
[14]
DONG B, WENG G, JIN R. Active contour model driven by self organizing maps for image segmentation[J]. Expert Systems with Applications, 2021, 177:114948.
[15]
GUNTU R K, MAHESWARAN R, AGARWAL A, et al. Accounting for temporal variability for improved precipitation regionalization based on self-organizing map coupled with information theory[J]. Journal of Hydrology, 2020, 590:125236.
[16]
王建仁, 马鑫, 段刚龙. 改进的K-means聚类k值选择算法[J]. 计算机工程与应用, 2019, 55(8): 27-33.
摘要
空间聚类算法中,聚类的效果在很大程度上受制于最佳[k]值的选择。典型的[K]-均值算法中,聚类数[k]需要事先确定,但在实际情况中[k]的取值很难确定。针对手肘法在确定[k]值的过程中存在的“肘点”位置不明确问题,基于指数函数性质、权重调节、偏执项和手肘法基本思想,提出了一种改进的[k]值选择算法ET-SSE算法。通过多个UCI数据集和[K]-means聚类算法对该算法进行实验,结果表明,使用该[k]值选择算法相比于手肘法能更加快速且准确地确定[k]值。
WANG Jianren, MA Xin, DUAN Ganglong. Improved k-means clustering k-value selection algorithm[J]. Computer Engineering and Applications, 2019, 55(8): 27-33.
In spatial clustering algorithms, the effect of clustering depends to a large extent on the choice of the best [k] value. In the typical [K]-means algorithm, the [k] value of clusters needs to be determined in advance, but in actual cases, the value of [k] is difficult to determine. The paper proposes an improved [k]-value selection algorithm, ET-SSE, based on the nature of exponential function, weight adjustment, bias and Elbow Method for the “elbow-point” ambiguity in the process of determining the [k]-value. The algorithm is tested by multiple UCI data sets and [K]-means clustering algorithm. The results show that the [k]-value selection algorithm can determine the value of key more accurately than the Elbow Method.
[17]
欧阳卫年, 赵紫昱, 陈渊睿. 自样本特征构造的1DCNN-BiLSTM网侧光伏功率预测[J]. 电力系统及其自动化学报, 2024, 36(3): 151-158.
OUYANG Weinian, ZHAO Ziyu, CHEN Yuanrui. 1DCNN-BiLSTM method of grid-side photovoltaic power prediction with self-sampled feature construction[J]. Proceedings of the CSU-EPSA, 2024, 36(3): 151-158.
[18]
YAO T, WANG J, WU H, et al. A photovoltaic power output dataset: Multi-source photovoltaic power output dataset with Python toolkit[J]. Solar Energy, 2021,230: 122-130.

基金

国家电投集团四川电力有限公司科技项目(XNNY-WW-KJ-2021-16)
四川省科技计划重点研发项目(2023YFG0108)

PDF(11487 KB)

Accesses

Citation

Detail

段落导航
相关文章

/