基于子网和储能的交直流混合微电网功率协调控制

丁朝辉, 邱增广, 周嫣蕾, 朱燕妮, 张涵璐, 夏文彬

分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 81-90.

PDF(2673 KB)
PDF(2673 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 81-90. DOI: 10.16513/j.2096-2185.DE.(2025)010-01-0081-10
学术研究

基于子网和储能的交直流混合微电网功率协调控制

作者信息 +

Power Coordinated Control of AC-DC Hybrid Microgrid Based on Subgrid and Energy Storage

Author information +
文章历史 +

摘要

为解决交直流混合微电网单一储能形式无法满足各子网功率协调问题,提出一种考虑互联接口变换器(interlinking interface converter, IIC)及混合储能荷电状态(state of charge,SOC)变化的多模式功率协调控制策略。根据子网归一化电压频率指标划分微电网的运行域,结合各子网功率状态及混合储能SOC,在不同工况下由IIC与储能双向接口变换器(bidirectional interface converter,BIC)配合进行功率传输,实现系统整体功率平衡并控制储能SOC在合理的范围内,提高了系统运行稳定性和可靠性。同时,超级电容及蓄电池形成的混合储能,不仅能充分发挥超级电容响应迅速的优势,还能减小过冲过放对蓄电池的影响。最后,在PSCAD环境下设计不同工作模式的网间功率互济场景,验证多模式功率协调控制策略的有效性。

Abstract

In order to solve the problem that a single energy storage form of AC/DC hybrid microgrid cannot meet the power coordination of all subgrids, a multi-mode power coordination control strategy considering the changes of interlinking interface converter (IIC) and hybrid energy storage state of charge (SOC) is proposed. According to the subgrid normalized voltage and frequency indexes, the microgrid operation domain is divided, combined with the power state of each subgrid and the hybrid energy storage SOC, the IIC and the energy storage bidirectional interface converter (BIC) cooperate in power transmission under different operating conditions, to realize the overall power balance of the system as well as to control the storage SOC within a reasonable range, which improves the stability and reliability of the system. At the same time, the hybrid energy storage formed by supercapacitor and battery can not only give full play to the advantage of rapid response of supercapacitor, but also reduce the impact of overshoot and overdischarge on the battery. Finally, the inter-network power mutual aid scenarios with different operating modes are designed in the PSCAD environment to verify the effectiveness of the multi-mode power coordination control strategy.

关键词

交直流混合微电网 / 功率协调控制 / 独立运行 / 功率互济 / 接口变换器

Key words

AC/DC hybrid microgrid / power coordinated control / independent operation / power mutualization / interface converter

引用本文

导出引用
丁朝辉, 邱增广, 周嫣蕾, . 基于子网和储能的交直流混合微电网功率协调控制[J]. 分布式能源. 2025, 10(1): 81-90 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0081-10
Chaohui DING, Zengguang QIU, Yanlei ZHOU, et al. Power Coordinated Control of AC-DC Hybrid Microgrid Based on Subgrid and Energy Storage[J]. Distributed Energy Resources. 2025, 10(1): 81-90 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0081-10
中图分类号: TK02;TM76   

参考文献

[1]
冀肖彤, 杨东俊, 方仍存, 等. “双碳”目标下未来配电网构建思考与展望[J]. 电力建设, 2024, 45(2):37-48.
摘要
“双碳”目标推动下新能源快速发展,电力系统不同时空尺度下的能量和功率平衡面临着巨大挑战,亟需开展未来电网尤其是配电网路径构建相关研究。具有自平衡调节能力的综合能源网络——微能网可充分发挥电网在推动能源零碳/低碳化生产消费中的枢纽作用,将在未来电网转型升级中发挥举足轻重的作用。首先,总结对比了传统配电网、主动配电网、未来低碳配电网发展演进阶段和模式;其次,基于未来新型“源网荷”特征,提出一种通过构建微能网,并利用微能网单元与配电网互联互动,自下而上逐层演变的未来配电网构建思路,并给出了一种原子型未来配电网组网形态构想;最后,从不同角度对未来配电网演化构建的研究方向进行了展望。
JI Xiaotong, YANG Dongjun, FANG Yingcun, et al. Future thinking and outlook of distribution network construction under the goal of “double carbon”[J]. Electric Power Construction, 2024, 45(2):37-48.

The new power system driven by the "dual carbon" goal cannot adapt to the top-down energy/power balance mode at different temporal and spatial scales.Therefore, it is urgent to conduct relevant research on the construction path of the future power grid, particularly the distribution network. The micro-energy network, a comprehensive energy network with self-balance regulation ability, can leverage the pivotal role of power grids in promoting zero-carbon/low-carbon energy production and consumption and will play a pivotal role in future power grid transformation and upgrading. First, the evolution stages and modes of traditional distribution networks, active distribution networks, and future low-carbon distribution networks are summarized and compared. Second, based on the characteristics of "source-network-load" in the future, a type of future distribution network construction idea of bottom-up evolution layer by layer is proposed by constructing micro-energy network and utilizing the interconnection and interaction between micro-energy network units and distribution network. Additionally, a type of atomic future distribution network is introduced. Finally, future research directions for the evolution of distribution networks are discussed from different perspectives.

[2]
董旭柱, 华祝虎, 尚磊, 等. 新型配电系统形态特征与技术展望[J]. 高电压技术, 2021, 47(9):3021-3035.
DONG Xuzhu, HUA Zhuhu, SHANG Lei, et al. Morphologicalcharacteristics and technical prospect of new distribution system[J]. High Voltage Technology, 2019, 47(9):3021-3035.
[3]
ESPINA E, CÁRDENAS-DOBSON R, SIMPSON-PORCO J W, et al. A consensus-based secondary control-strategy for hybrid AC/DC microgrids with experimental validation[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5971-5984.
[4]
王星海, 李鑫, 王世坤, 等. 考虑分布式电源接入的配电网多目标优化重构方法研究[J]. 山东电力技术, 2023, 50(11):60-67.
WANG Xinghai, LI Xin, WANG Shikun, et al. Research on multi-objective optimization and reconfiguration method of distribution network considering distributed generation access[J]. Shandong Electric Power, 2023, 50(11):60-67.
[5]
李文, 卜凡鹏, 张潇桐, 等. 基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J]. 发电技术, 2024, 45(6):1186-1200.
摘要
目的 针对微电网的低碳转型,提出一种电-氢混合储能微电网的优化调度方法,以解决不同商业模式下的调度难题。 方法 首先,建立了包含电-氢混合储能的微电网数学模型,并基于多方合作供能和多方独立供能2种典型商业模式,构建了相应的多目标优化调度模型及其约束条件。然后,引入增强的非支配排序遗传算法II (non-dominated sorting genetic algorithm II,NSGA-II),将其与方差拥挤度计算方法和正态分布交叉算子相结合,以提高优化效率和求解精度。最后,结合东南沿海某地运行的电-氢混合储能微电网系统进行仿真实验,以验证所提方法的有效性。 结果 与优化前相比,多方合作供能商业模式的经济性提升约4.1%,弃风弃光率降低约19%,年度碳排放量减少约47.42 t。 结论 多方合作供能商业模式更符合当前我国电力市场的基本情况,且优化后的系统性能显著提高。所提优化调度方法能够有效支持电-氢混合储能微电网在不同商业模式下实现低碳转型。
LI Wen, BU Fanpeng, ZHANG Xiaotong, et al. Optimal operation method of electric-hydrogen hybrid energy storage microgrid system based on typical commercial operation mode[J]. Power Generation Technology, 2024, 45(6):1186-1200.

Objectives Aiming at the low-carbon transformation of micro-grid, an optimal scheduling method for electric-hydrogen hybrid energy storage micro-grid was proposed to address the scheduling challenges under different business models. Methods Firstly, a mathematical model of micro-grid with electro-hydrogen hybrid energy storage was developed. Based on two typical business models of multi-party cooperative energy supply and multi-party independent energy supply were analyzed. Based on these models, the corresponding multi-objective optimization scheduling models and these constraints were constructed. Then, the non-dominated sorting genetic algorithm II (NSGA-II) was introduced, which was combined with variance crowding distance method and normal distribution crossover operator to improve optimization efficiency and solution accuracy. Finally, the simulation experiments were conducted using an operational electro-hydrogen hybrid energy storage micro-grid system in a southeastern coastal area to validate the effectiveness of the proposed method. Results Compared with before optimization, the economy of the multi-party cooperative energy supply business model is improved by about 4.1%, the wind-solar energy abandon rate is reduced by about 19%, and the annual carbon emission is reduced by about 47.42 t. Conclusions The multi-party cooperative energy supply business model aligns better with the current power market conditions of China’s, and the optimized system performance is significantly enhanced. This study demonstrates that the proposed optimization scheduling method effectively supports the low-carbon transition of electro-hydrogen hybrid energy storage micro-grid under various business models.

[6]
赵鹏臻, 谢宁, 殷佳敏, 等. 适应新型电力系统发展趋势的配电网集中-分布式形态及其分层分区方法[J]. 智慧电力, 2023, 51(1):94-100.
ZHAO Pengzhen, XIE Ning, YIN Jiamin, et al. Centralized-distributed pattern of distribution network and its hierarchical partition method adapting to development trend of new power system[J]. Smart Power, 2023, 51(1):94-100.
[7]
SAHOO S K, SINHA A K, KISHORE N K. Control techniques in AC, DC, and hybrid AC-DC microgrid: A review[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2):738-759.
[8]
MUHAMMAD H S, WANG Fangzong, BASHEER A K, et al. A review on microgrids’ challenges & perspectives[J]. IEEE Access, 2021, 9:502-517.
[9]
彭伟款, 郭紫娟, 张先勇, 等. 基于NSGA-Ⅱ和模糊决策的交直流混合微电网多目标优化调度[J]. 广东电力, 2023, 36(2):42-51.
PENG Weikuan, GUO Zijuan, ZHANG Xianyong, et al. Multi-objective optimal dispatching of AC/DC hybrid micro-grid based on NSGA-Ⅱ and fuzzy decision-making[J]. Guangdong Electric Power, 2023, 36(2):42-51.
[10]
杨帆, 曹九宙, 叶灵玥, 等. 基于增量成本的交直流混合微电网分级分布式控制策略[J]. 电力系统自动化, 2024, 48(18):199-207.
YANG Fan, CAO Jiuzhou, YE Lingyue, et al. Hierarchical distributed control strategy of AC/DC hybrid microgrid based on incremental cost[J]. Automation of Electric Power Systems, 2024, 48(18):199-207.
[11]
张云龙, 康慨, 唐畅, 等. 一种适用交直流混合微电网的组网方法及控制策略研究[J]. 电工电气, 2024(7):27-31.
ZHANG Yunlong, KANG Kai, TANG Chang, et al. Research on networking method and control strategy for AC/DC hybrid microgrid[J]. Electrical Engineering and Electrical, 2024(7):27-31.
[12]
谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2):461-475.
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. Discussionon new issues and categorization of “double-high” power system stability[J]. Proceedings of the CSEE, 2021, 41(2):461-475.
[13]
张运, 姜望, 张超, 等. 基于储能荷电状态的主从控制微电网离网协调控制策略[J]. 电力系统保护与控制, 2022, 50(4):180-187.
ZHANG Yun, JIANG Wang, ZHANG Chao, et al. Coor-dinated off-grid control strategy based on energy storage state[J]. Power System Protection and Control, 2022, 50(4):180-187.
[14]
刘鑫蕊, 张明超, 王睿, 等. 基于一致性算法的城市微网群分层协同控制[J]. 电力系统自动化, 2022, 46(17):65-73.
LIU Xinrui, ZHANG Mingchao, WANG Rui, et al. Hierarchical cooperative control of urban microgrid groups based on consistency algorithm[J]. Automation of Electric Power Systems, 2022, 46(17):65-73.
[15]
SAYEED F, HANUMANTHAKARI S, OOMMEN S, et al. A novel and comprehensive mechanism for the energy management of a hybrid micro-grid system[J]. Energy Reports, 2022, 8:847-862.
[16]
GAO Z, ZHAO H, WANG J. Bidirectional droop control of AC/DC hybrid microgrid interlinking converter[C]// Proceedings of the 2nd International Conference on Safety Produce Informatization. Chongqing, China: Transactions on Environment Energy and Earth Science, 2019: 213-217.
[17]
张学, 裴玮, 范士雄, 等. 含多端柔性互联装置的交直流混合配电网协调控制方法[J]. 电力系统自动化, 2018, 42(7):185-191.
ZHANG Xue, PEI Wei, FAN Shixiong, et al. A coordinated control method for AC-DC hybrid distribution network with multi-terminal flexible interconnection[J]. Automation of Electric Power Systems, 2018, 42(7):185-191.
[18]
MA Y, WANG X, XUE S. Power coordinated control of micro sources of MMC series microgrid based on model prediction[C]// Proceedings of the 2021 7th International Conference on Energy Materials and Environment Engineering. Zhoushan, China: E3SWeb of Conferences, 2021, 261(2021):01001.
[19]
柴军伟. 微电网分散式控制策略与能量管理系统研究[D]. 杭州: 浙江大学, 2019.
CHAI Junwei. Research on distributed control strategy and energy management system of microgrid[D]. Hangzhou: Zhejiang University, 2019.
[20]
司鑫尧, 赵竞涵, 于淼, 等. 一种适用于多电压等级直流配电网的分散式双向电压支撑控制方法[J]. 电力自动化设备, 2021, 41(5):114-120.
SI Xinyao, ZHAO Jinghan, YU Miao, et al. A distributed bidirectional voltage support control method for multi-voltage class DC distribution networks[J]. Electric Power Automation Equipment, 2019, 41(5):114-120.
[21]
NOUSDILIS A, KRYONIDIS G, KONTIS E, et al. An exponential droop control strategy for distributed energy storage systems integrated with photovoltaics[J]. IEEE Transactions on Power Systems, 2021, 36(4):3317-3328.
[22]
杨清志, 蒋伟, 许春雷. 基于多智能体的HMG监控设计与分层控制研究[J]. 高电压技术, 2020, 46(7):2327-2339.
YANG Qingzhi, JIANG Wei, XU Chunlei. Research on HMG monitoring design and hierarchical control based on multi-intelligence[J]. High Voltage Technology, 2020, 46(7):2327-2339.
[23]
YANG Zixuan, HUANG Langchen, YI Zongao, et al. A review on hierarchical control strategy in microgrid[C]// Proceedings of the 2nd International Conference on Information Technologies and Electrical Engineering. Changsha: Associa-tion for Computing Machinery,2019: 490-495.
[24]
YANG H X, WEI W, MIAO Y, et al. Decentralized multi-time scale power control for a hybrid AC/DC microgrid with multiple subgrids[J]. IEEE Transactions on Power Electronics, 2018, 33(5):4061-4072.
[25]
米阳, 宋根新, 宋元元, 等. 孤岛HMG群多级功率管理策略[J]. 电力系统自动化, 2020, 44(7):38-45.
MI Yang, SONG Genxin, SONG Yuanyuan, et al. Multilevel power management strategy for islanded HMG groups[J]. Automation of Electric Power Systems, 2020, 44(7):38-45.
[26]
NAJAFZADEH M, AHMADIAHANGAR R, HUSEV O, et al. Recent contributions, future prospects and limitations of interlinking converter control in hybrid AC/DC microgrids[J]. IEEE Access, 2021, 9: 7960-7984.

基金

国网江苏省电力有限公司省管产业2024年科技项目(JC2024077)

PDF(2673 KB)

Accesses

Citation

Detail

段落导航
相关文章

/