基于改进哈里斯鹰优化算法的微电网多目标优化调度

王鑫, 李升

分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 91-100.

PDF(2316 KB)
PDF(2316 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (1) : 91-100. DOI: 10.16513/j.2096-2185.DE.(2025)010-01-0091-10
学术研究

基于改进哈里斯鹰优化算法的微电网多目标优化调度

作者信息 +

Multi-Objective Optimal Scheduling of Microgrid Based on Improved Harris Hawks Optimization Algorithm

Author information +
文章历史 +

摘要

针对新能源发电接入以及考虑需求响应背景下的微电网优化调度问题,建立微电网模型;以考虑需求响应带来的用户用电不舒适度和系统的运行成本构建目标函数,调整用户可转移负荷。根据风光出力具有的随机性、波动性等特点,采用模糊K-means算法对风光出力数据进行聚类,得到典型的风光出力曲线。对哈里斯鹰优化(Harris hawks optimization, HHO)算法种群分布不均以及易陷入局部最优的问题进行改进:首先,在初始化种群阶段引入Tent映射,使得初始种群覆盖更全面,避免在早期陷入局部最优解;然后,在搜索阶段引入Levy飞行函数,增强算法的全局搜索能力,再将改进哈里斯鹰优化(improved HHO, IHHO)算法应用于寻优,并将其与经典算法进行对比。最终结果验证了所提策略的有效性以及IHHO算法的优越性。

Abstract

A microgrid model is established to address the optimization and scheduling of microgrid in the context of new energy generation access and demand response. The objective function is constructed to consider the user's electricity discomfort caused by demand response and the operating cost of the system, and the user's transferable load is adjusted. Based on the randomness and volatility of wind and solar power output, the fuzzy K-means algorithm is used to cluster the wind and solar power output data and obtain typical wind and solar power output curves. Next, this paper improves the Harris hawks optimization (HHO) algorithm to address the issues of uneven population distribution and susceptibility to local optima. Firstly, Tent mapping is introduced in the initialization stage of the population to make the initial population coverage more comprehensive and avoid falling into local optima in the early stage. Then, Levy flight function is introduced in the search stage to enhance the global search ability of the algorithm. Finally, improved HHO (IHHO) algorithm is applied to optimization and compared with classical algorithms. The final results validate the effectiveness of the proposed strategy and the superiority of the IHHO algorithm.

关键词

微电网 / 需求响应 / 改进哈里斯鹰优化(IHHO)算法 / Levy飞行 / 优化调度

Key words

microgrid / demand response / improved Harris hawks optimization (IHHO) algorithm / Levy flight / optimal scheduling

引用本文

导出引用
王鑫, 李升. 基于改进哈里斯鹰优化算法的微电网多目标优化调度[J]. 分布式能源. 2025, 10(1): 91-100 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0091-10
WANG Xin, LI Sheng. Multi-Objective Optimal Scheduling of Microgrid Based on Improved Harris Hawks Optimization Algorithm[J]. Distributed Energy Resources. 2025, 10(1): 91-100 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-01-0091-10
中图分类号: TK01;TM73   

参考文献

[1]
郑玉平, 王俊, 杨志宏, 等. 城镇能源互联网示范应用综述:现状、经验及展望[J]. 电力系统自动化, 2022, 46(17): 153-166.
ZHENG Yuping, WANG Jun, YANG Zhihong, et al. Review on demonstration application of urban energy internet: Present situation, experience and prospect[J]. Automation of Electric Power Systems, 2022, 46(17): 153-166.
[2]
葛磊蛟, 范延赫, 来金钢, 等. 面向低碳经济的人工智能赋能微电网优化运行技术[J]. 高电压技术, 2023, 49(6): 2219-2238.
GE Leijiao, FAN Yanhe, LAI Jingang, et al. Artificial intelligence enabled microgrid optimization technology for low carbon economy[J]. High Voltage Engineering, 2023, 49(6): 2219-2238.
[3]
颜玉林, 张籍, 刘洋, 等. 基于一体式再生燃料电池的并网型微电网系统建模及分析[J]. 广东电力, 2023, 36(9):43-50.
YAN Yulin, ZHANG Ji, LIU Yang, et al. Modeling and analysis of grid-connected microgrid system based on unitized regenerative fuel cellsJ]. Guangdong Electric Power, 2023, 36(9):43-50.
[4]
杨佳, 谢国栋, 张孟健, 等. 基于增强型麻雀搜索算法的孤岛微电网低碳调度[J]. 智慧电力, 2024, 52(9):96-103,111.
YANG Jia, XIE Guodong, ZHANG Mengjian, et al. Low-carbon scheduling of islanded microgrid using enhanced sparrow search algorithm[J]. Smart Power, 2024, 52(9):96-103,111.
[5]
谭玲玲, 孙鹏, 郭沛璇, 等. 含氢储能的微电网低碳-经济协同优化配置[J]. 发电技术, 2024, 45(5):983-994.
摘要
目的 传统电储能在规模、持续时间和环境影响等方面存在局限性,而且微电网中新能源消纳能力低,规划时无法兼顾低碳性和经济性。为解决以上问题,基于氢储能基本工作原理,将氢储能代替传统电储能纳入到微电网中,建立了含氢储能的微电网低碳-经济协同双层优化配置模型。 方法 上层规划模型以微电网综合等年值最小为目标,在电-氢联合运行的基础上,引入碳交易机制对微电网中各发电设备进行容量规划,提高了系统的低碳性;下层运行模型以最小化新能源出力与负荷需求之差的绝对值之和为目标,鼓励用户采取以精确追踪新能源出力曲线为目标的多样化需求侧响应行为,并将用户的用能行为调整反馈至上层模型,实现了对负荷曲线的优化。 结果 某工业园区微电网仿真验证表明,所提方法得到的规划方案具有良好的低碳性和经济性,与传统规划方法相比,低碳性和经济性分别提高了53.6%和37.1%。 结论 所建模型在提高新能源消纳能力的基础上进一步提高了系统的经济性,实现了微电网低碳性和经济性的协同优化。
TAN Lingling, SUN Peng, GUO Peixuan, et al. Low-carbon and economic synergy optimization configuration for microgrid with hydrogen energy storage[J]. Power Generation Technology, 2024, 45(5):983-994.

Objectives Traditional electric energy storage has limitations in scale, duration, and environmental impact.Moreover, the renewable energy absorption capacity in the microgrid is low, and low-carbon and economy cannot be taken into account in planning. In order to solve the above problems, based on the basic working principle of hydrogen energy storage, hydrogen energy storage was incorporated into the microgrid instead of traditional electric energy storage, and a low-carbon and economic synergy bi-level optimization configuration model of microgrid with hydrogen energy storage was established. Methods The upper-level planning model aimed at minimizing the comprehensive equivalent annual value of the microgrid, based on the joint operation of electricity and hydrogen. The carbon trading mechanism was introduced to plan the capacity of various power generation equipments in the microgrid, which can enhance the low-carbon of the system. The lower-level operation model aimed to minimize the sum of the absolute values of the difference between the new energy output and the load demand. The model also encouraged users to adopt diversified demand-side response behaviors with the goal of accurately tracking the new energy output curve, and feeded back the user’s energy consumption behavior to the upper-level model to optimize the load curve. On the basis of improving the absorption capacity of new energy, the system economy is further improved, deeply exploring the synergy between the low-carbon and economic characteristics of microgrids. Results The simulation results of microgrid in a certain industrial park show that the proposed method yields a planning scheme with excellent low-carbon and economy. Compared with the traditional planning method, the low-carbon and economy are improved by 53.6% and 37.1%, respectively. Conclusions The model presented in this paper not only enhances the capacity for new energy absorption but also further improves the system economic performance. It achieves a synergistic enhancement of the microgrid low-carbon and economy.

[6]
李子凯, 杨波, 周忠堂, 等. 基于强化学习算法的微电网优化策略[J]. 山东电力技术, 2024, 51(6):27-35.
LI Zikai, YANG Bo, ZHOU Zhongtang, et al. Optimization strategy for microgrid based on reinforcement learning algorithm[J]. Shandong Electric Power, 2024, 51(6): 27-35.
[7]
LI Q, ZHAO F, ZHUANG L, et al. Research on the control strategy of DC microgrids with distributed energy storage[J]. Scientific Reports, 2023, 13(1): 20622-20622.
[8]
王力, 胡佳成, 曾祥君, 等. 基于混合储能的交直流混联微电网功率分级协调控制策略[J]. 电工技术学报, 2024, 39(8): 2311-2324.
WANG Li, HU Jiacheng, ZENG Xiangjun, et al. Hierarchical coordinated power control strategy for AC-DC hybrid microgrid with hybrid energy storage[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2311-2324.
[9]
GAO Y, LI S, YAN X. Assessing voltage stability in distribution networks: A methodology considering correlation among stochastic variables[J]. Applied Sciences, 2024, 14(15): 6455-6455.
[10]
BAKUL K, PARIKSHIT P, ASHU V. A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid[J]. Energy, 2022, 249: 123737.
[11]
SHAHZAD M, ZHANG C, ABDALLA A, et al. Study of an optimized micro-grid’s operation with electrical vehicle-based hybridized sustainable algorithm[J]. Sustainability, 2022, 14(23): 16172-16172.
[12]
靳小龙, 穆云飞, 贾宏杰, 等. 集成智能楼宇的微网系统多时间尺度模型预测调度方法[J]. 电力系统自动化, 2019, 43(16): 25-33.
JIN Xiaolong, MU Yunfei, JIA Hongjie, et al. Model predictive control based multiple-time-scheduling method for microgrid system with smart buildings integrated[J]. Automation of Electric Power Systems, 2019, 43(16): 25-33.
[13]
邢毓华, 任甜甜. 改进MOPSO在微电网优化调度中的应用研究[J]. 太阳能学报, 2024, 45(6): 191-200.
XING Yuhua, REN Tiantian. Application research of improved MOPSO in microgrid optimal dispatch[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 191-200.
[14]
LIU C, ZHANG H, SHAHIDEHPOUR H, et al. A two-layer model for microgrid real-time scheduling using appro-ximate future cost function[J]. IEEE Transactions on Power Systems, 2022, 37(2):1264-1273.
[15]
周晨瑞, 盛光宗, 李升. 考虑电动汽车接入的微电网多目标优化调度[J]. 电气工程学报, 2023, 18(1): 211-218.
ZHOU Chenrui, SHENG Guangzong, LI Sheng. Multi-objective optimal dispatching of microgrid considering electric vehicle integration[J]. Journal of Electrical Engineering, 2023, 18(1): 211-218.
[16]
TIAN L, CHENG L, GUO J, et al. System modeling and optimal dispatching of multi-energy microgrid with energy storage[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 809-819.
[17]
周承翰, 贾宏杰, 靳小龙, 等. 基于机会约束规划的智能楼宇与社区综合能源系统协调优化[J]. 电力系统自动化, 2023, 47(4): 42-50.
ZHOU Chenghan, JIA Hongjie, JIN Xiaolong, et al. Coordinated optimization for intelligent building and integrated community energy system based on chance-constrained programming[J]. Automation of Electric Power Systems, 2023, 47(4): 42-50.
[18]
李涛, 许苑, 陈健, 等. 计及全寿命成本和收益的微电网储能优化配置[J]. 电力系统及其自动化学报, 2020, 32(3): 46-51,58.
LI Tao, XU Yuan, CHEN Jian, et al. Optimal configuration of energy storage for microgrid considering life cycle cost-benefit[J]. Proceedings of the CSU-EPSA, 2020, 32(3): 46-51,58.
[19]
冉金周, 李华强, 李彦君, 等. 考虑灵活性供需匹配的孤岛微网优化调度策略[J]. 太阳能学报, 2022, 43(5): 36-44.
摘要
为使孤岛微网能更大程度地实现源侧发电功率与荷侧用电需求之间的匹配程度,以灵活性理论为依据,提出考虑灵活性供需匹配的优化调度模型。以最大化经济效益和最大化灵活性供需匹配程度为目标,利用多目标粒子群优化算法得到该优化问题的Pareto解集,并从中选取更符合实际需求的解。算例仿真结果表明,所提优化调度策略能有效提升系统应对可再生能源发电机组出力的波动性与随机性的能力,提高经济效益。
RAN Jinzhou, LI Huaqiang, LI Yanjun, et al. Optimal scheduling of isolated microgrid considering flexible power supply and demand[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 36-44.
In order to enable the isolated microgrid to achieve a greater degree of matching between the source-side power and the load-side power, based on the flexibility theory, an optimal scheduling model considering the matching of the flexible supply and demand is proposed. With the goal of maximizing economic benefits and maximizing the degree of flexibility in matching between supply and demand, the multi-objective particle swarm optimization algorithm is used to obtain the Pareto solution set of the optimization problem, and a solution that is more in line with actual needs is selected. The simulation results show that the proposed optimal scheduling strategy can effectively improve the system’s ability to deal with the volatility and randomness of the output of renewable energy generator sets, and improve economic benefits.
[20]
周步祥, 徐艺宾. 基于机器学习的源荷互动微电网优化调度[J]. 电力系统及其自动化学报, 2022, 34(2): 144-150.
ZHOU Buxiang, XU Yibin. Optimal scheduling of source-load interactive micro-grid based on machine learning[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 144-150.
[21]
高扬, 贺兴, 艾芊. 基于数字孪生驱动的智慧微电网多智能体协调优化控制策略[J]. 电网技术, 2021, 45(7): 2483-2491.
GAO Yang, HE Xing, AI Qian. Multi agent coordinated optimal control strategy for smart microgrid based on digital twin drive[J]. Power System Technology, 2021, 45(7): 2483-2491.
[22]
SHI R, LI S, ZHANG P, et al. Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization[J]. Renewable Energy, 2020, 153: 1067-1080.
[23]
颜湘武, 王庆澳, 卢俊达, 等. 计及电动汽车和柔性负荷的微电网能量调度[J]. 电力系统保护与控制, 2023, 51(17): 69-79.
YAN Xiangwu, WANG Qingao, LU Junda, et al. Microgrid energy scheduling with electric vehicles and flexible loads[J]. Power System Protection and Control, 2023, 51(17): 69-79.
[24]
MEISHENG H, HABIB F, KHALID Y, et al. Optimal design of hybrid renewable systems, including grid, PV, bio generator, diesel generator, and battery[J]. Sustainability, 2023, 15(4): 3297-3297.
[25]
MASOOD R, BHANU P, BHUSHAN S. Demand-side management in microgrid using novel hybrid metaheuristic algorithm[J]. Electrical Engineering, 2023, 105(3): 1867-1881.
[26]
宋军英, 崔益伟, 李欣然, 等. 改进分段线性表示与动态时间弯曲相结合的负荷曲线聚类方法[J]. 电力系统自动化, 2021, 45(2): 89-96.
SONG Junying, CUI Yiwei, LI Xinran, et al. Load curve clustering method combining improved piecewise linear representation and dynamic time warping[J]. Automation of Electric Power Systems, 2021, 45(2): 89-96.
[27]
ABDULLRAHMAN A, HUSSEIN F, NOMAN A, et al. Optimal sizing of a hybrid renewable photovoltaic-wind system-based microgrid using Harris hawk optimizer[J]. International Journal of Photoenergy, 2022, 1: 4825411.
[28]
叶亮, 吕智林, 王蒙, 等. 基于最优潮流的含多微网的主动配电网双层优化调度[J]. 电力系统保护与控制, 2020, 48(18): 27-37.
YE Liang, Zhilin, WANG Meng, et al. Bi-level programming optimal scheduling of ADN with a multi-microgrid based on optimal power flow[J]. Power System Protection and Control, 2020, 48(18): 27-37.
[29]
张玉, 卢子广, 卢泉, 等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220.
ZHANG Yu, LU Ziguang, LU Quan, et al. Research on optimal configuration of photovoltaic DC microgrid based on levy flight improved bird swarm algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 214-220.
[30]
KUMAR D, PREMKUMAR M, KUMAR C, et al. Optimal scheduling algorithm for residential building distributed energy source systems using Levy flight and chaos-assisted artificial rabbits optimizer[J]. Energy Reports, 2023, 9: 5721-5740.
[31]
RIZWAN M, MUHANMMAD W, REHAN L, et al. SPSO based optimal integration of DGs in local distribution systems under extreme load growth for smart cities[J]. Electronics, 2021, 10(20): 2542.
[32]
DHIMAN G, KAUR A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 148-174.

基金

江苏省级产教融合型品牌专业建设项目(苏教办高函[2023]16号)

PDF(2316 KB)

Accesses

Citation

Detail

段落导航
相关文章

/