计及海量清洁能源接入的交直流配电网电碳耦合规划方法

李星锴, 陈湘萍, 蔡永翔, 贺墨琳, 高远龙, 王峰

分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 1-11.

PDF(2852 KB)
PDF(2852 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 1-11. DOI: 10.16513/j.2096-2185.DE.(2025)010-02-0001-11
学术研究

计及海量清洁能源接入的交直流配电网电碳耦合规划方法

作者信息 +

Electric-Carbon Coupled Planning Method for AC/DC Distribution Network Considering Massive Clean Energy Access

Author information +
文章历史 +

摘要

在能耗双控向碳排放双控转变的背景下,传统以能量平衡为基础的规划方法难以准确衡量配电网的投资和运行成本,该文提出面向海量清洁能源接入的交直流配电网电碳耦合规划双层模型。首先,提出电碳耦合的交直流配电网规划方法,构建交直流电网潮流和碳排放的耦合上层数学模型,该模型以“电+碳”投资和运行成本最低为目标函数,考虑了配电网消耗化石能源在开采、运输、燃烧阶段的全生命周期碳核算和基于网络功率实时损耗的动态碳排放;其次,针对极端场景下的碳税波动问题,构建基于条件风险价值(conditional value at risk, CVaR)法的碳税修正下层数学模型,提出基于CVaR法的碳税修正策略,研究计及极端碳税的风险衡量方法,将碳税修正值反馈至上层规划模型,进一步优化规划策略使其适用于极端风险碳税波动情况。仿真结果表明,相较于传统交流电网规划结果,所提模型“电+碳”交直流配电网的规划结果更加准确,也能更好地适应碳税极端波动对规划结果的影响。

Abstract

Against the backdrop of the transition from dual control of energy consumption to dual control of carbon emissions, traditional planning methods based on energy balance are difficult to accurately assess the investment and operational costs of distribution networks. This paper presents a bi-level model of electric-carbon coupled planning for AC/DC distribution network for massive clean energy access. Firstly, this paper introduces an electric-carbon coupled planning methodology for AC/DC distribution networks and develops a upper-level mathematical model that couples AC/DC power flow with carbon emissions. The objective function of the model aims to minimize the combined “electricity + carbon” investment and operational costs, taking into account the full lifecycle carbon accounting of fossil energy consumed by distribution network across extraction, transportation, and combustion stages, as well as dynamic carbon emissions based on real-time network power losses. Secondly, addressing the challenge of carbon tax fluctuations in extreme scenarios, this paper constructs a lower-level mathematical model for carbon tax correction based on conditional value at risk (CVaR), and proposes a CVaR-based carbon tax correction strategy and investigates a risk measurement approach that accounts for extreme carbon taxes. The corrected carbon tax values are then fed back into the upper-level planning model to further refine the planning strategy, ensuring adaptability to the impacts of extreme carbon tax fluctuations. Simulation results demonstrate that the proposed “electricity + carbon” AC/DC distribution network planning yields more accurate results compared to traditional AC network planning and exhibits superior adaptability to the impacts of extreme carbon tax fluctuations on planning outcomes.

关键词

电碳耦合 / 交直流配电网 / 配电网规划 / 条件风险价值(CVaR) / 碳税

Key words

electric-carbon coupled / AC/DC distribution network / distribution network planning / conditional value at risk (CVaR) / carbon tax

引用本文

导出引用
李星锴, 陈湘萍, 蔡永翔, . 计及海量清洁能源接入的交直流配电网电碳耦合规划方法[J]. 分布式能源. 2025, 10(2): 1-11 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0001-11
Xingkai LI, Xiangping CHEN, Yongxiang CAI, et al. Electric-Carbon Coupled Planning Method for AC/DC Distribution Network Considering Massive Clean Energy Access[J]. Distributed Energy Resources. 2025, 10(2): 1-11 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0001-11
中图分类号: TK01;TM72   

参考文献

[1]
新华社中华人民共和国中央人民政府. 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].(2021-10-24)[2024-09-08]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
[2]
中华人民共和国中央人民政府. 落实“双碳”行动建设美丽中国[EB/OL].(2024-04-28)[2024-09-08]. https://www.gov.cn/yaowen/liebiao/202404/content_6948005.htm.
[3]
吴琪, 赵宣茗, 张佳诚, 等. 促进新能源消纳的电-碳市场耦合激励型出清机制[J]. 电力建设, 2023, 44(12): 14-27.
摘要
碳市场的推进有助于“双碳”目标的实现,电力行业将面临电-碳市场耦合的多主体多市场协同的交易格局,其中,环境成本通过碳市场传导进入电市场。然而,在当前的市场出清机制中,发电商的环境效益未能有效纳入,导致以新能源为主的低排放机组出清结果不理想,影响“双碳”目标实现。为此,通过引入激励因子调整机组发电投标策略,在电-碳市场耦合背景下,设计了以促进新能源消纳为目标的激励型出清机制。以此建立双层模型:上层对异质发电商投标策略建模,下层对激励型市场出清机制进行建模,通过深度强化学习算法求解模型。算例分析表明,设计模型能够正确描述耦合市场之间的相互影响,设计的出清机制提升了新能源机组的发电比重,促进了新能源消纳,提升了电力行业社会效益和减排效益。
WU Qi, ZHAO Xuanming, ZHANG Jiacheng, et al. Electricity-carbon market coupling incentive clearing mechanism to promote consumption of new energy[J]. Electric Power Construction, 2023, 44(12): 14-27.
 Promoting the carbon market will help achieve carbon peaking and carbon neutrality goals. The power industry will face a multi-entity and multi-market coordinated trading pattern of electricity-carbon market coupling, in which environmental costs are transmitted into the electricity market through the carbon market. However, in the current market-clearing mechanism, the environmental benefits of power generators have not been effectively included, resulting in unsatisfactory results for low-emission units, mainly based on new energy sources, which affects the realization of goals. Therefore, by introducing incentive factors to adjust the bidding strategy of unit power generation, an incentive-clearing mechanism to promote the absorption of new energy was designed under the background of electricity-carbon market coupling. Thus, a two-layer model is established: the upper layer models the bidding strategy of heterogeneous power generators, and the lower layer models the incentive market-clearing mechanism. The model is solved with a deep reinforcement learning algorithm. The analysis indicates that the design model can correctly describe the interaction between the coupling markets and that the designed clearing mechanism increases the proportion of power generation in new energy units, promotes the absorption of new energy, and improves the social and emission reduction benefits of the power industry.
[4]
崔茗莉, 冯天天, 刘利利. 双碳目标下区块链与可再生能源的融合发展研究[J]. 智慧电力, 2024, 52(2):17-24.
CUI Mingli, FENG Tiantian, LIU Lili. Integration and development of blockchain and renewable energy under double carbon target[J]. Smart Power, 2024, 52(2):17-24.
[5]
陈逸文, 赵晋斌, 李军舟, 等. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3):296-304.
摘要
随着新能源占比逐渐提高,作为辅助新能源并网的储能技术受到广泛关注。氢储能和燃料电池技术已被我国列为战略性能源技术,并积极应用到市场和企业发展中。电解水制氢可以平抑可再生能源并网带来的波动,帮助电网削峰调频;燃料电池作为提高能源转换率的发电装置,同时具备噪音小、无污染等优势,是消纳可再生能源的有效方式之一。对现有储能技术的发展现状和优势进行对比分析,着重介绍了氢储能系统目前关键技术和研究方向,并对氢储能商业化发展进行展望。
CHEN Yiwen, ZHAO Jinbin, LI Junzhou, et al. Challenges and prospects of hydrogen energy storage under the background of low-carbon transformation of power industry[J]. Power Generation Technology, 2023, 44(3):296-304.

With the gradual increase in the proportion of new energy, energy storage technology, as an auxiliary new energy grid, has attracted wide attention. Hydrogen energy storage and fuel cell technology have been listed as strategic energy technologies in China, and have been actively applied in the market and enterprise development. Hydrogen production from electrolytic water can stabilize the fluctuation caused by the connection of renewable energy to the grid and help the power grid to cut peak and frequency modulation. As a power generation device to improve energy conversion rate, fuel cell has the advantages of low noise and no pollution, it is one of the effective ways to absorb renewable energy. This paper made a comparative analysis of the development status and advantages of the existing energy storage technologies, the key technologies and research directions of hydrogen energy storage system were introduced emphatically, and the commercial development of hydrogen energy storage was prospected.

[6]
陶泽飞, 刘敏, 何旺. 计及风光不确定性和相关性的虚拟电厂参与电-碳-绿证市场优化调度[J]. 分布式能源, 2024, 9(3): 55-64.
TAO Zefei, LIU Min, HE Wang. Optimization scheduling of virtual power plants participating in electric energy trade-carbon trade-green license trade considering uncertainty and correlation of wind power and PV[J]. Distributed Energy, 2024, 9(3): 55-64.
[7]
江岳文, 陈巍. 电-碳-配额制耦合交易综述与展望[J]. 电力建设, 2023, 44(12):1-13.
摘要
近年来,面对全球气候问题及传统化石能源匮乏带来的挑战,各国陆续提出节能减排和鼓励可再生能源发展的战略目标。碳市场、可再生能源配额制是实现碳减排和促进可再生能源消纳的重要市场手段。作为CO2排放主要责任主体,电力系统低碳绿色转型是助力“碳达峰、碳中和”目标的关键环节,电-碳-配额制耦合将有利于更大程度上促进CO2减排与可再生能源消纳。首先,分析了电力市场与碳市场、电力市场与可再生能源配额制之间的交互机理;其次,从交易机制设计、交易优化、市场交易技术等角度归纳电-碳-配额制耦合交易的研究现状;再次,阐述了碳市场及配额制的国内外实施现状与机制,反映各国减排政策环境;最后,梳理了当前国内电-碳-配额制耦合机制建设面临的挑战和堵点,对电力市场、碳市场与配额制协同发展提出展望,以期为我国耦合交易机制建设提供参考,助力“双碳”目标的实现。
JIANG Yuewen, CHEN Wei. Review and prospect of coupled electricity-carbon-renewable portfolios trading[J]. Electric Power Construction, 2023, 44(12): 1-13.
Recently, in the face of global climate problems and challenges posed by the scarcity of conventional fossil energy sources, governments have successively proposed strategic goals for energy conservation, emission reduction, and support for renewable energy development. The carbon emissions market and renewable portfolio standards are important market tools for reducing carbon emissions and promoting renewable energy consumption. As the main responsible body of CO2 emission, the low-carbon green transformation of power system is the key link to help the “carbon peak, carbon neutral” target, and the coupling of electricity-carbon-renewable portfolio standard will help to promote CO2 emission reduction and renewable energy consumption to a greater extent. First, it analyzes the interaction mechanism between the electricity and carbon markets and the electricity and renewable portfolio standards. Second, it summarizes the current research status of coupled electricity-carbon-renewable portfolio trading from the perspectives of trading mechanism design, trading optimization, and market trading technology. Furthermore, this study describes the current status and mechanisms of the domestic and international implementation of carbon markets and renewable portfolio standards to reflect the policy environment for emissions reduction in different countries. Finally, the challenges and limitations faced by the construction of Chinas electricity-carbon-renewable portfolio-coupling mechanism are sorted out. In addition, the prospect of the synergistic development of the electricity market, carbon market, and renewable portfolio standards is proposed to provide a reference for constructing Chinas coupling trading mechanism and help achieve the goal of “carbon peak and carbon neutrality.”
[8]
马睿聪, 曹永吉, 张恒旭, 等. 含STATCOM的光伏并网系统静态同步稳定分析[J/OL]. 电工技术学报, 2024,1-18[2024-07-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.240754.
MA Ruicong, CAO Yongji, ZHANG Hengxu, et al. Static synchronization stability analysis of PV grid-connected system with STATCOM[J/OL]. Transactions of Electrotechnical Society, 2024, 1-18[2024-07-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.240754.
[9]
HAGUE M M, WOLFS P. A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures[J]. Renewable and Sustainable Energy Reviews, 2016, 62:1195-1208.
[10]
唐巍, 张起铭, 张璐, 等. 新型配电系统多层级交直流互联理念、关键技术与发展方向[J]. 电力系统自动化, 2023, 47(6):2-17.
TANG Wei, ZHANG Qiming, ZHANG Lu, et al. Concept, key technologies and development direction of multilevel AC/DC interconnection in new distribution system[J]. Automation of Electric Power Systems, 2023, 47(6):2-17.
[11]
新华社. 习近平主持召开中央全面深化改革委员会第二次会议强调:建设更高水平开放型经济新体制推动能耗双控逐步转向碳排放双控[EB/OL].(2023-07-11)[2024-09-08]. www.gov.cn/yaowen/liebiao/202307/content_6891167.htm.
[12]
李亚鹏, 赵麟, 王祥祯, 等. 不确定碳-电耦合市场下梯级水电双层竞价模型[J]. 电力系统自动化, 2023, 47(20):83-94.
LI Yapeng, ZHAO Lin, WANG Xiangzhen, et al. Bi-level bidding model for cascaded hydropower under uncertain carbon-electricity coupled market[J]. Automation of Electric Power Systems, 2023, 47(20):83-94.
[13]
李伊竹林, 韩肖清, 李廷钧, 等. 基于动态电-碳需求响应的综合能源系统日前多元低碳交易方法[J]. 电力系统自动化, 2024, 48(12):24-35.
LI Yizhulin, HAN Xiaoqing, LI Tingjun, et al. Multifaceted day-ahead low-carbon trading method for integrated energy systems based on dynamic electricity-carbon demand response[J]. Automation of Electric Power Systems, 2024, 48(12):24-35.
[14]
谢敏, 黄莹, 卢燕旋, 等. 基于绿电减排量互认的建筑型虚拟电厂电-碳双层协同决策机制[J]. 电力系统自动化, 2024, 48(18):25-37.
XIE Min, HUANG Ying, LU Yanxuan, et al. Electricity-carbon double-layer collaborative decision-making mechanism for building virtual power plant based on mutual recognition of green electricity emission reduction[J]. Automation of Electric Power Systems, 2024, 48(18):25-37.
[15]
史守圆, 余涛, 黄杰, 等. 考虑现金流和碳清缴周期的发电商电碳现货市场决策优化[J]. 电力系统自动化, 2024, 48(19):40-50.
SHI Shouyuan, YU Tao, HUANG Jie, et al. Multifaceted day-ahead low-carbon trading method for integrated energy systems based on dynamic electricity-carbon demand response[J]. Automation of Electric Power Systems, 2024, 48(19):40-50.
[16]
周欢, 黄婷, 卢世祥, 等. 面向减排贡献的电碳解耦分摊离散分析理论及计算方法[J]. 中国电机工程学报, 2023, 43(23):9033-9046.
ZHOU Huan, HUANG Ting, LU Shixiang, et al. Discrete analysis theory and calculation method of electricity-carbon decoupling sharing by contribution to carbon emission reduction[J]. Proceedings of the CSEE, 2023, 43(23): 9033-9046.
[17]
沈亮, 樊涛, 慕群, 等. 基于“电-碳计算模型”碳排放核算方法评估标准体系研究[J]. 中国软科学, 2024(S1):318-333,340.
SHEN Liang, FAN Tao, MU Qun, et al. Study on evaluation standardization system of carbon emission accounting methodology based on“Electricity-Carbon Emission Calculation Model”[J]. China Soft Science, 2024(S1):318-333,340.
[18]
曾金灿, 王成围, 杨晨, 等. 基于广义节点碳流理论的区域电网用电碳排放计算方法[J]. 广东电力, 2023, 36(11):20-28.
ZENG Jincan, WANG Chengwei, YANG Chen, et al. Measurement method of area electricity carbon emission based on generalized nodal carbon emission flow[J]. Guangdong Electric Power, 2023, 36(11):20-28.
[19]
蒋玮, 苏晓云, 何晋伟, 等. 交直流配电网中柔性软开关接入的规划-运行协同优化方法[J]. 电力系统自动化, 2023, 47(23):33-43.
JIANG Wei, SU Xiaoyun, HE Jinwei, et al. Collaborative planning-operation optimization method for access of soft open points in AC-DC distribution network[J]. Automation of Electric Power Systems, 2023, 47(23):33-43.
[20]
马智刚, 卫志农, 陈胜, 等. 基于图计算的交直流混合配电网优化调度[J]. 电力系统自动化, 2023, 47(18):161-170.
MA Zhigang, WEI Zhinong, CHEN Sheng, et al. Optimal dispatch of AC/DC hybrid distribution network based on graph computing[J]. Automation of Electric Power Systems, 2023, 47(18):161-170.
[21]
邓卫, 丁立, 庄莹, 等. 不确定扰动下交直流混合配电系统的可达性分析[J]. 电力系统自动化, 2023, 47(14):52-63.
DENG Wei, DING Li, ZHUANG Ying, et al. Reachability analysis of AC/DC hybrid distribution system under uncertain disturbance[J]. Automation of Electric Power Systems, 2023, 47(14):52-63.
[22]
曾琴, 樊宇航, 周玲. 新型电力系统背景下交直流储能系统在配电网规划中的应用研究[J]. 电气技术与经济, 2024(4):51-54.
ZENG Qin, FAN Yuhang, ZHOU Ling. Application research of AC-DC energy storage system in distribution network planning under the background of new power system[J]. Electrical Equipment and Economy, 2024(4):51-54.
[23]
朱建昆, 高红均, 贺帅佳, 等. 考虑VSC与光-储-充协同配置的交直流混合配电网规划[J]. 智慧电力, 2023, 51(11):7-14.
ZHU Jiankun, GAO Hongjun, HE Shuaijia, et al. AC-DC hybrid distribution network planning considering VSC and photovoltaic-storage-charging coordinated configuration[J]. Smart Power, 2023, 51(11):7-14.
[24]
BYLES D, MOHAGHEGHI S. Sustainable power grid expansion: Life cycle assessment, modeling approaches, challenges, and opportunities[J]. Sustainability, 2023, 15(11): 8788.
[25]
李昊泉, 袁乐, 徐懂理, 等. 基于生命周期理论的区域综合能源系统-配电网博弈优化调度[J]. 电力系统及其自动化学报, 2024, 36(7):106-115,149.
LI Haoquan, YUAN Le, XU Dongli, et al. Game optimization scheduling of regional integrated energy system-distribution network based on life cycle theory[J]. Proceedings of the CSU-EPSA, 2024, 36(7):106-115,149.
[26]
BöHRINGER C, FISCHER C, ROSENDAHL K E, et al. Potential impacts and challenges of border carbon adjustments[J]. Nature Climate Change, 2022, 12(1):22-29.
[27]
胡亚菲. 基于GARCH-Copula-CVaR模型的中国碳金融市场风险估测研究[J]. 特区经济, 2024(2):66-70.
HU Yafei. Research on risk estimation of China’s carbon finance market based on GARCH-Copula-CVaR model[J]. Special Zone Economy, 2024(2):66-70.
[28]
李永明, 罗中德, 李乃医, 等. 基于WOD序列风险度量VaR和CVaR估计的渐近性质[J]. 应用数学学报, 2024, 47(3):478-497.
摘要
在WOD序列下分别考虑了风险价值VaR和条件风险价值CVaR的估计. 研究了VaR样本分位数估计的Bahadur表示以及强相合性. 同时, 对条件风险价值CVaR估计的强相合性及其收敛速度进行研究, 通过选取适当的参数其收敛速度接近于 $O(n^{-\frac{1}{2}})$. 为了说明所得的VaR和CVaR估计的理论结果, 我们分别利用ARMA(1,1)模型和MA(1)模型产生的WOD随机数进行了数值模拟, 通过VaR和CVaR相应的真实值和估计值曲线图对理论结果的有效性进行了验证.
LI Yongming, LUO Zhongde, LI Naiyi, et al. Asymptotic properties of VaR and CVaR, estimatorsfor widely orthant dependent samples[J]. Acta Mathematicae Applicatae Sinica, 2024, 47(3): 478-497.
Under widely orthant dependent samples, two kinds of risk measure are considered. The Bahadur representation and strong consistency of the quantile estimator for VaR are discussed. And the strong consistency and its rate of the CVaR estimator are established, by the suitable choice of some constants, their rates are near $O(n^{-\frac{1}{2}})$. In order to better illustrate performances of the VaR and CVaR estimators, we conduct numerical simulations under some WOD sequences by ARMA(1,1) and MA(1) models, and discover that the estimators are high performance by tables of the exact and estimated values of VaR and CVaR, and their curve figures.
[29]
王茹钰, 胡耀忠, 张超. 带有CVaR罚的分布鲁棒指数跟踪模型:易求解的转化[J]. 工程数学学报, 2023, 40(6):851-869.
WANG Ruyu, HU Yaozhong, ZHANG Chao. A Distri-butionally robust index tracking model with the CVaR penalty: Tractable reformulatio[J]. Chinese Journal of Engineering Mathematics, 2023, 40(6):851-869.
[30]
TENDLER A C, KAUFMANN R K. A learning by doing multiplier accelerates the transition to photovoltaic cells[J]. Journal of Climate Finance, 2023, 4:100016.
[31]
DEJAN Ž, SUZANA B, MILICA S. Hedging gas in a multi-frequency semiparametric CVaR portfolio[J]. Research in International Business and Finance, 2024, 67:102149.
[32]
AKBARI-DIBAVAR A, ZARE K, MOHAMMADI-IVATLOO B, et al. CVaR-based stochastic energy management of a smart home[C]// 2022 IEEE International Conference in Power Engineering Application. Shah Alam, Malaysia: Institute of Electrical and Electronics Engineers, 2022:1-6.
[33]
LIAO Changhua, LU Qihui. Digital technology adoption strategies for a contract farming supply chain under CVaR criterion[J]. Managerial and Decision Economics, 2024, 45(3):1435-1453.
[34]
盛积良, 陈兰兮, 温润林. 基于CVaR的风险平价投资策略及其应用[J]. 系统科学与数学, 2024, 44(8):2257-2277.
摘要
由于在险价值(VaR)度量尾部损失风险时不满足次可加性等性质, 文章建立基于条件在险价值(CVaR) 的风险平价投资组合模型, 通过数值计算给出投资组合策略实现方法.以夏普比率、最大回撤和卡玛比率作为业绩评价指标, 将基于CVaR的风险平价投资策略与常见的投资组合策略进行对比, 数值实验结果表明, 风险平价类策略的综合表现相较于等权组合投资策略、最大夏普组合投资策略与全局最小方差组合投资策略更具有鲁棒性.而在三种风险平价策略中, 基于CVaR的风险平价投资策略在风险控制方面存在优势, 其收益与风险分散效果显著提高. 鲁棒性测试结果也表明, 基于CVaR的风险平价投资策略能够在面对不同情况时仍然保持稳定性和有效性.
SHENG Jiliang, CHEN Lanxi, WEN Runlin. CVaR-based risk parity portfolio strategy and its application[J]. Journal of Systems Science and Mathematical, 2024, 44(8):2257-2277.
[35]
MALEK J, NGUYEN D K, SENSOY A, et al. Modeling dynamic VaR and CVaR of cryptocurrency returns with alpha-stable innovations[J]. Finance Research Letters, 2023,55:103817.
[36]
赵海涛, 王晓星, 曾树峰, 等. 白银最优套保模型、套保比率及套保有效性——基于VaR和CVaR的度量和比较[J]. 中国证券期货, 2023(6):52-65.
ZHAO Haitao, WANG Xiaoxing, ZENG Shufeng, et al. The optimal hedging model, hedging ratio and hedging effectiveness for silver—based on the comparative perspectives of VaR and CVaR[J]. Securities & Futures of China, 2023(6) : 52-65.
[37]
申建建, 张秀飞, 王健, 等. 求解水电站日负荷优化分配的混合整数非线性规划模型[J]. 电力系统自动化, 2018, 42(19):34-40.
SHEN Jianjian, ZHANG Xiufei, WANG Jian, et al. Mixed-integer nonlinear programming model for daily load opti-mization of hydropower plant[J]. Automation of Electric Power Systems, 2018, 42(19): 34-40.
[38]
王永利, 王晓海, 王硕, 等. 基于输配电价改革的电网运维成本分摊方法研究[J]. 电网技术, 2020, 44(1):332-339.
WANG Yongli, WANG Xiaohai, WANG Shuo, et al. A method allocating operation and maintenance cost of power grid project based on transmission and distribution price reform[J]. Power System Technology, 2020, 44(1): 332-339.
[39]
生态环境部、 国家统计局. 关于发布2021年电力二氧化碳排放因子的公告[EB/OL].[2024-04-12]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202404/t20240412_1070565.html.
[40]
王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6):1614-1626,1858.
WANG Zesen, SHI Yan, TANG Yanmei, et al. Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6):1614-1626,1858.

基金

国家自然科学基金项目(51867007)
贵州省科技计划项目(Qiankehe Support [2022] General 012)
贵州省科技计划项目(Qiankehe Support [2025] General 102)
中国南方电网有限责任公司创新项目(GZKJXM20222314)

PDF(2852 KB)

Accesses

Citation

Detail

段落导航
相关文章

/