基于K近邻算法和混合BiLSTM功率预测的微电网运行策略

毛睿, 马辉, 向昆, 范李平, 赵剑楠, 王灿, 席磊

分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 12-24.

PDF(3919 KB)
PDF(3919 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 12-24. DOI: 10.16513/j.2096-2185.DE.(2025)010-02-0012-13
学术研究

基于K近邻算法和混合BiLSTM功率预测的微电网运行策略

作者信息 +

Microgrid Operation Strategy Based on K-Nearest Neighbor Algorithm and Hybrid BiLSTM Power Prediction

Author information +
文章历史 +

摘要

可再生能源出力的不确定性为微电网的优化调度带来了重大挑战。同时,传统的优化方法和调度时间尺度过于单一,导致调度结果存在较大误差,从而难以确保系统运行的可靠性与经济性。针对上述问题,提出了一种基于K-近邻(K-nearest neighbor,K-NN)算法、变模态分解(variational mode decomposition,VMD)、卷积神经网络(convolutional neural network,CNN)以及双向长短期记忆(bidirectional long short-term memory, BiLSTM)神经网络的微电网两阶段优化运行策略。首先,构建了基于K-近邻算法和混合BiLSTM功率预测模型,为两阶段优化调度模型提供准确的风光发电预测数据。其次,建立了两阶段优化调度模型。在日前调度阶段,引入阶梯式碳交易机制和激励型需求响应,以最小化系统总运行成本为目标制定日前调度计划;在日内调度阶段,则采用基于模型预测控制的方法,实现日内滚动优化调度策略,以调整量最小为目标对日前调度计划进行动态修正,从而降低因预测误差引起的功率波动。最后,以某微电网为例进行了仿真分析,结果表明:该方法不仅有效提高了预测精确性,同时也提升了微电网的经济性、环保性及稳定性。

Abstract

The uncertainty of renewable energy output poses significant challenges to the optimization and scheduling of microgrids. At the same time, traditional optimization methods and scheduling time scales are too single, resulting in large errors in scheduling results, making it difficult to ensure the reliability and economy of system operation. A two-stage optimization operation strategy for microgrids based on K-nearest neighbor (K-NN) algorithm, variational mode decomposition (VMD), convolutional neural network (CNN), and bidirectional long short-term memory (BiLSTM) neural network is proposed to address the above issues. Firstly, a power prediction model based on K-nearest neighbor algorithm and hybrid BiLSTM neural network is established to provide accurate wind and solar prediction data for the two-stage optimization scheduling model. Secondly, a two-stage optimal scheduling model is established. In the day ahead scheduling phase, a stepped carbon trading mechanism and incentive demand response are introduced to develop a day ahead scheduling plan with the goal of minimizing the total operating cost of the system; In the intra day scheduling phase, an intra day rolling optimal scheduling strategy based on model predictive control is established to achieve rolling correction of the intra day scheduling plan with the goal of minimizing the adjustment of the intra day scheduling plan, and reduce the power fluctuation caused by the prediction error. Finally, taking a microgrid as an example for simulation analysis, the results show that the proposed method effectively improves the prediction accuracy while enhancing the economic, environmental, and stability of the microgrid.

关键词

K-近邻(K-NN)算法 / 微电网 / 功率预测 / 两阶段运行策略 / 激励型需求响应 / 模型预测控制

Key words

K-nearest neighbor (K-NN)algorithm / microgrids / power prediction / two-stage operation strategy / incentive demand response / model predictive control

引用本文

导出引用
毛睿, 马辉, 向昆, . 基于K近邻算法和混合BiLSTM功率预测的微电网运行策略[J]. 分布式能源. 2025, 10(2): 12-24 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0012-13
Rui MAO, Hui MA, Kun XIANG, et al. Microgrid Operation Strategy Based on K-Nearest Neighbor Algorithm and Hybrid BiLSTM Power Prediction[J]. Distributed Energy Resources. 2025, 10(2): 12-24 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0012-13
中图分类号: TK01;TM73   

参考文献

[1]
朱晓荣, 谢婉莹, 鹿国微. 采用区间多目标线性规划法的热电联供型微网日前调度[J]. 高电压技术, 2021, 47(8): 2668-2679.
ZHU Xiaorong, XIE Wanying, LU Guowei. Day-ahead scheduling of combined heating and power microgrid with the interval multi-objective linear programming[J]. High Voltage Engineering, 2021, 47(8): 2668-2679.
[2]
蒋明喆, 成贵学, 赵晋斌. 基于改进DDPG的多能园区典型日调度研究[J]. 电网技术, 2022, 46(5): 1867-1880.
JIANG Mingzhe, CHENG Guixue, ZHAO Jinbin. Typical daily scheduling if improved DDPG multifunctional industrial park[J]. Power System Technology, 2022, 46(5): 1867-1880.
[3]
吴福保, 刘晓峰, 孙谊媊, 等. 基于冷热电联供的多园区博弈优化策略[J]. 电力系统自动化, 2018, 42(13): 68-75.
WU Fubao, LIU Xiaofeng, SUN Yiqian, et al. Game optimization strategy for multiple parks based on combined cooling heating and power[J]. Automation of Electric Power Systems, 2018, 42(13): 68-75.
[4]
LORESTANI A, ARDEHALI M M. Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm[J]. Renewable Energy, 2018, 119: 490-503.
[5]
HUANG S, LU H, CHEN M, et al. Integrated energy system scheduling considering the correlation of uncertainties[J]. Energy, 2023, 283: 129011.
[6]
齐先军, 蒋中琦, 张晶晶, 等. 考虑碳捕集与综合需求响应互补的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(7): 133-141.
QI Xianjun, JIANG Zhongqi, ZHANG Jingjing, et al. Optimal dispatching of integrated energy system considering complementation of carbon capture and integrated demand response[J]. Electric Power Automation Equipment, 2023, 43(7): 133-141.
[7]
张祥宇, 舒一楠, 付媛. 基于虚拟储能的直流微电网源荷储多时间尺度能量优化与分区协调控制[J]. 电工技术学报, 2022, 37(23): 6011-6024.
ZHANG Xiangyu, SHU Yinan, FU Yuan. Multi-time-scale energy optimization and zone coordinated control of DC microgrid source-load-storage based on virtual energy storage[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6011-6024.
[8]
黄炜栋, 李杨, 李璟延, 等. 考虑可再生能源不确定性的风-光-储-蓄多时间尺度联合优化调度[J]. 电力自动化设备, 2023, 43(4): 91-98.
HUANG Weidong, LI Yang, LI Jingyan, et al. Multi-time scale joint optimal scheduling for wind-photovoltaic-electro-chemical energy storage-pumped storage considering renewable energy uncertainty[J]. Electric Power Automation Equipment, 2023, 43(4): 91-98.
[9]
孔德政, 张靖, 何宇, 等. 区域综合能源系统IGDT-MPC双层能量优化调度[J]. 电网技术, 2022, 46(10): 3970-3979.
KONG Dezheng, ZHANG Jing, HE Yu, et al. IGDT-MPC bi-layer energy optimal scheduling of regional integrated energy system[J]. Power System Technology, 2022, 46(10): 3970-3979.
[10]
孙惠娟, 张乐乐, 彭春华. 基于差异化需求响应模型预测控制的微网时域滚动优化调度[J]. 电网技术, 2021, 45(8): 3096-3104.
SUN Huijuan, ZHANG Lele, PENG Chunhua. Time-domain rolling optimal scheduling of microgrid based on differential demand response model predictive control[J]. Power System Technology, 2021, 45(8): 3096-3104.
[11]
杨龙, 吴红斌, 丁明, 等. 新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J]. 电力系统自动化, 2021, 45(3): 166-173.
YANG Long, WU Hongbin, DING Ming, et al. Short-term load forecasting in renewable energy grid based on bi-directional long short-term memory network considering feature selection[J]. Automation of Electric Power Systems, 2021, 45(3): 166-173.
[12]
YANG M, WANG J. Adaptability of financial time series prediction based on BiLSTM[J]. Procedia Computer Science, 2022, 199: 18-25.
[13]
朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532-4539.
ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11): 4532-4539.
[14]
MATHEW J N, BEHERA R K. EMD-att-LSTM: A data-driven strategy combined with deep learning for short-term load forecasting[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(5): 1229-1240.
[15]
王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926.
WANG Su, JIANG Xin, ZENG Liang, et al. Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power System Technology, 2020, 44(3): 917-926.
[16]
沈赋, 刘思蕊, 徐潇源, 等. 基于多尺度特征提取的IES多元负荷短期联合预测[J]. 高电压技术, 2024, 50(7): 2918-2930.
SHEN Fu, LIU Sirui, XU Xiaoyuan, et al. Multi-load short-term joint forecasting of integrated energy system based on multi-scale feature extraction[J]. High Voltage Engineering, 2024, 50(7): 2918-2930.
[17]
ZHANG C, LI Z, GE Y, et al. Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD[J]. Energy, 2024, 296: 131173.
[18]
张大海, 张晓炜, 孙浩, 等. 基于卷积神经网络的交直流输电系统故障诊断[J]. 电力系统自动化, 2022, 46(5): 132-140.
ZHANG Dahai, ZHANG Xiaowei, SUN Hao, et al. Fault diagnosis for AC/DC transmission system based on convo-lutional neural network[J]. Automation of Electric Power Systems, 2022, 46(5): 132-140.
[19]
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9.
摘要
综合能源系统是实现“双碳”目标的有效途径,为进一步挖掘其需求侧可调节潜力对碳减排的作用,提出了一种碳交易机制下考虑需求响应的综合能源系统优化运行模型。首先,根据负荷响应特性将需求响应分为价格型和替代型2类,分别建立了基于价格弹性矩阵的价格型需求响应模型,及考虑用能侧电能和热能相互转换的替代型需求响应模型;其次,采用基准线法为系统无偿分配碳排放配额,并考虑燃气轮机和燃气锅炉的实际碳排放量,构建一种面向综合能源系统的碳交易机制;最后,以购能成本、碳交易成本及运维成本之和最小为目标函数,建立综合能源系统低碳优化运行模型,并通过4类典型场景对所提模型的有效性进行了验证。通过对需求响应灵敏度、燃气轮机热分配比例和不同碳交易价格下系统的运行状态分析发现,合理分配价格型和替代型需求响应及燃气轮机产热比例有利于提高系统运行经济性,制定合理的碳交易价格可以实现系统经济性和低碳性协同。
WEI Zhenbo, MA Xinru, GUO Yi, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9.

The integrated energy system (IES) is an effective way to achieve the“carbon neutrality and emission peak”goal. In order to further explore the role of the adjustable potential of demand side on carbon emission reduction, an optimized operation model of IES considering the demand response under the carbon trading mechanism is proposed. Firstly, according to the characteristics of load response, the demand response is divided into two types: price-type and substitution-type. The price-type demand response model is established on the basis of price elasticity matrix, and the substitution-type demand response model is constructed by considering the conversion of electricity and heat. Secondly, base-line method is used to allocate free carbon emission quota for the system, and considering the actual carbon emissions of gas turbine and gas boiler, a carbon trading mechanism for the IES is constructed. Finally, a low-carbon optimal operation model of IES is established, whose objective is to minimize the sum cost of energy purchase, cost of carbon transaction and cost of IES operation and maintenance. The effectiveness of the proposed model is verified through four typical scenarios. By analyzing the sensitivity of demand response, heat distribution ratio of gas turbine and the operating state of the system under different carbon trading prices, it is found that reasonable allocation of price-type and substitution-type demand response and heat production ratio of gas turbine is beneficial to improve the operating economy of the system. Making reasonable carbon trading price can realize the coordination of system economy and low carbon.

[20]
李佳欣, 王智伟. 基于模型预测控制的风光储综合能源系统优化调度[J]. 分布式能源, 2024, 9(1): 43-53.
LI Jiaxin, WANG Zhiwei. Optimal dispatching of wind-solar-storage integrated energy system based on model predictive control[J]. Distributed Energy, 2024, 9(1): 43-53
[21]
MOSES V, HATHERLEY R, TASTAN BISHOP Ö. Bioinformatic characterization of type-specific sequence and structural features in auxiliary activity family 9 proteins[J]. Biotechnology for Biofuels, 2016, 9(1): 239.

基金

国家自然科学基金项目(52377191)
湖北省自然科学基金项目(2024AFB584)

PDF(3919 KB)

Accesses

Citation

Detail

段落导航
相关文章

/