近零碳园区的综合能源系统优化与评价方法

高子寒, 张思瑞, 成岭, 王延芳, 洪福斌, 胡向远

分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 25-35.

PDF(4274 KB)
PDF(4274 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 25-35. DOI: 10.16513/j.2096-2185.DE.(2025)010-02-0025-11
学术研究

近零碳园区的综合能源系统优化与评价方法

作者信息 +

Optimization and Evaluation Method of Integrated Energy System for Near-Zero Carbon Park

Author information +
文章历史 +

摘要

为降低园区综合能源系统碳排放,基于园区能源需求和负荷特性,设计了基于电能替代技术的综合能源系统方案,建立全工况仿真模型。通过非支配排序遗传算法和Gurobi求解器对多目标协同优化问题进行求解,并采用熵权-优劣解距离法进行综合评价决策,从而确定最优系统容量配置和运行策略。案例分析表明:所提方案使园区碳排放强度降低77%,满足近零碳园区要求;年能源净成本降低61.2%,能源自给率提升至71.3%。优化后的综合能源系统显著提升了能源利用效率和安全性,降低了碳排放,增强了园区能源独立性。

Abstract

To reduce the carbon emissions of the park's integrated energy system, an integrated energy system scheme based on electric energy substitution technology is designed according to the park's energy demand and load characteristics. A full-working condition simulation model is also established. Firstly, the non-dominated sorting genetic algorithm (NSGA) and Gurobi solver are employed to address the multi-objective cooperative optimization problem. Subsequently, the entropy weight-solution distance method is utilized for comprehensive evaluation and decision-making, thereby determining the optimal system capacity allocation and operational strategy. Case analysis demonstrates that the proposed scheme decreases the park's carbon emission intensity by 77%, satisfying the requirements for a near-zero carbon park. Additionally, the annual net energy cost is reduced by 61.2%, while the energy self-sufficiency rate is increased to 71.3%. The optimized integrated energy system significantly enhances energy efficiency and security, reduces carbon emissions, and strengthens the park's energy independence.

关键词

近零碳园区 / 综合能源系统 / 多目标协同优化 / 综合评价决策

Key words

near-zero carbon park / integrated energy system / multi-objective cooperative optimization / comprehensive evaluation decision

引用本文

导出引用
高子寒, 张思瑞, 成岭, . 近零碳园区的综合能源系统优化与评价方法[J]. 分布式能源. 2025, 10(2): 25-35 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0025-11
Zihan GAO, Sirui ZHANG, Ling CHENG, et al. Optimization and Evaluation Method of Integrated Energy System for Near-Zero Carbon Park[J]. Distributed Energy Resources. 2025, 10(2): 25-35 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0025-11
中图分类号: TK01   

参考文献

[1]
田金平, 桑晶, 陈亚林, 等. 工业园区综合能效提升现状、挑战与展望[J]. 中国能源, 2022, 44(8): 20-26.
TIAN Jinping, SANG Jing, CHEN Yalin, et al. Review of energy efficiency improvement in Chinese industrial parks[J]. Energy of China, 2022, 44(8): 20-26.
[2]
郭扬, 吕一铮, 严坤, 等. 中国工业园区低碳发展路径研究[J]. 中国环境管理, 2021, 13(1): 49-58.
GUO Yang, LV Yizheng, YAN Kun, et al. Low-carbon development pathways of industrial parks in China[J]. Chinese Journal of Environmental Management, 2021, 13(1): 49-58.
[3]
张庆, 王涛, 李川. 计及柔性负荷和碳流的园区综合能源系统优化运行模型研究[J]. 智慧电力, 2024, 52(6):54-61.
ZHANG Qing, WANG Tao, LI Chuan. Optimal operation model of park integrated energy systems considering flexible loads and carbon flows[J]. Smart Power, 2024, 52(6):54-61.
[4]
亢猛, 钟祎勍, 石鑫, 等. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术, 2023, 44(1):25-35.
摘要
园区综合能源系统通过多能耦合互补和协同优化调度,可以显著提高能源利用率和促进可再生能源消纳,已成为用户侧满足多能供需的一种新的能源利用实现方式。以河北雄安新区某园区作为研究对象,设计了一种计及负荷供给可靠性的园区综合能源系统两阶段优化方法:第一阶段基于带有精英保留策略的二代非支配排序遗传算法(NSGA-II),对园区能源站设备类型及容量进行优化,是一个多目标规划优化问题,其目的是实现经济成本和环境成本的协调优化;第二阶段是一个运行优化问题,针对上一阶段规划得到的多组帕累托前沿解,利用混合整数线性规划(mixed integer linear programming,MILP)分别优化求解各规划方案对应运行成本及负荷供给可靠性指标,结果作为确定系统最佳规划方案的重要参考。算例表明,所设计规划方法可以有效降低系统运行成本和保障负荷供给可靠性,对指导园区综合能源系统规划更具实用性。
KANG Meng, ZHONG Yiqing, SHI Xin, et al. Research on two-stage optimization approach of community integrated energy system considering load supply reliability[J]. Power Generation Technology, 2023, 44(1):25-35.

The community integrated energy system (CIES) can significantly improve energy utilization and promote the consumption of renewable energy through multi-energy coupling complementary and collaborative optimization scheduling. It has become a new energy utilization realization approach for users to meet multi-energy supply and demand. Taking a community in Xiong’an New District, Hebei province as the research object, this paper designed a two-stage optimization approach for the CIES that takes into account the reliability of load supply. The first stage is based on the non-dominated sorting genetic algorithm II(NSGA-II) with elite preservation strategy to optimize the equipment type and capacity of the community energy station. It is a multi-objective planning optimization problem, and its purpose is to achieve the coordinated optimization of economic costs and environmental costs. The second stage is an operation optimization problem. As for the multiple Pareto frontier solutions obtained in the previous planning stage, the mixed integer linear programming (MILP) was used to separately optimize the operation cost and load supply reliability indicators of each planning scheme, and the result is used as an important reference for determining the best planning scheme. Case studies show that the designed planning approach can effectively reduce the system operating cost and guarantee the reliability of load supply, and it is more practical for instructing the CIES planning.

[5]
陈波, 石磊, 邓文靖. 工业园区绿色低碳发展国际经验及其对中国的启示[J]. 中国环境管理, 2021, 13(6): 40-49.
CHEN Bo, SHI Lei, DENG Wenjing. International experience of green and low-carbon development in industrial parks and its enlightenment to China[J]. Chinese Journal of Environmental Management, 2021, 13(6): 40-49.
[6]
朱少杰, 刘皓明, 唐宇, 等. 含多个能源站的区域综合能源系统建模及协同优化运行策略[J]. 电力需求侧管理, 2019, 21(4): 60-66.
ZHU Shaojie, LIU Haoming, TANG Yu, et al. Modeling and collaborative optimal operation strategy for multiple energy stations of regional integrated energy system[J]. Power Demand Side Management, 2019, 21(4): 60-66.
[7]
WU W, DU Y, QIAN H, et al. Industrial park low-carbon energy system planning framework: Heat pump based energy conjugation between industry and buildings[J]. Applied Energy, 2024, 369: 123594.
[8]
SHAFIEE ROUDBARI E, KANTOR I, MENON R P, et al. Optimization-based decision support for designing industrial symbiosis district energy systems under uncertainty[J]. Applied Energy, 2024, 367: 123418.
[9]
WEI X, QIU R, LIANG Y, et al. Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis[J]. Energy, 2022, 238: 121732.
[10]
HE Y, GUO S, ZHOU J, et al. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies[J]. Energy Conversion and Management, 2021, 229: 113779.
[11]
WANG Y, WANG Y, HUANG Y, et al. Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network[J]. Applied Energy, 2019, 251: 113410.
[12]
LYU Y, GAO H, YAN K, et al. Carbon peaking strategies for industrial parks: Model development and applications in China[J]. Applied Energy, 2022, 322: 119442.
[13]
TAN Z, YANG S, LIN H, et al. Multi-scenario operation optimization model for park integrated energy system based on multi-energy demand response[J]. Sustainable Cities and Society, 2020, 53: 101973.
[14]
BISCHI A, TACCARI L, MARTELLI E, et al. A detailed MILP optimization model for combined cooling, heat and power system operation planning[J]. Energy, 2014, 74: 12-26.
[15]
ZHANG J, CHO H, MAGO P J, et al. Multi-objective particle swarm optimization (MOPSO) for a distributed energy system integrated with energy storage[J]. Journal of Thermal Science, 2019, 28(6): 1221-1235.
[16]
MAGO P J, FUMO N, CHAMRA L M. Performance analysis of CCHP and CHP systems operating following the thermal and electric load[J]. International Journal of Energy Research, 2009, 33(9): 852-864.
[17]
YOUSEFI H, GHODUSINEJAD M H, NOOROLLAHI Y. GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission[J]. Energy and Buildings, 2017, 138: 309-317.
[18]
陈磊, 戎士敏, 王聪, 等. 考虑需求侧资源参与的区域综合能源系统低碳协同调度[J]. 电力建设, 2024, 45(12):54-64.
CHEN Lei, RONG Shimin, WANG Cong, et al. Low-carbon co-dispatch of integrated regional energy systems considering demand side resource participation[J]. Electric Power Construction, 2024, 45(12): 54-64.
[19]
范焱炜, 黄丽莎, 时帅, 等. 考虑供能网络约束的园区型电-热综合能源系统优化配置[J]. 上海电力大学学报, 2021, 37(4): 335-344.
FAN Yanwei, HUANG Lisha, SHI Shuai, et al. Optimal configuration of park electricity-heat integrated energy system considering network constraints[J]. Journal of Shanghai University of Electric Power, 2021, 37(4): 335-344.
[20]
李梦露, 乌云高娃, 姜鹏. 气电互联综合能源系统多目标优化模型研究[J]. 湖南电力, 2023, 43(3): 37-44.
摘要
针对目前以煤炭等化石能源为主的能源供给与消费模式带来的能源紧张与环境恶化问题,借鉴综合能源系统的开发利用思路,研究电转气(power to gas,P2G)技术原理下的气电互联综合能源系统优化调度运行问题。通过构建P2G参与气电互联综合能源系统多目标协同优化运行模型,在P2G碳捕捉效应、气电耦合效应等功能特征基础上,借助布谷鸟算法对多目标进行处理。算例结果表明,P2G设备接入后,具备有效降低弃风率、削峰填谷、提升碳减排效益等作用,为可再生能源消纳提供了新途径。
LI Menglu, WU Yungaowa, JIANG Peng. Study on multi-objective optimization model of gas-electricity interconnected comprehensive energy system[J]. Hunan Electric Power, 2023, 43(3): 37-44.
Aiming at the problems of energy shortage and environmental deterioration caused by the current energy supply and consumption mode dominated by fossil energy such as coal, the optimal dispatching and operation of integrated electricity-gas energy system under the principle of power to gas (P2G) technology is studied by using the development and utilization idea of integrated energy system. By constructing the multi-objective cooperative optimization operation model of P2G participating in gas-electricity interconnected comprehensive energy system, based on the functional characteristics of P2G, such as carbon capture effect and gas-electricity coupling effect, multiple targets are processed with the help of cuckoo algorithm.The calculation results show that P2G equipment has the functions of effectively reducing wind rejection rate, peak load shifting and improving carbon emission reduction benefits, which provides a new way for renewable energy consumption.
[21]
吴中孚, 邓丽君, 覃智君. 计及多能灵活性的含光热电站综合能源系统多目标分布鲁棒优化调度[J]. 电力建设, 2024, 45(12):39-53.
WU Zhongfu, DENG Lijun, QIN Zhijun. Multi-objective distributionally robust optimal scheduling of integrated energy system with concentrated solar power plant considering multi-energy flexibility[J]. Electric Power Construction, 2024, 45(12): 39-53.
[22]
孟明, 罗洋. 基于AHP-熵权法的综合能源系统多指标评价[J]. 电力科学与工程, 2021, 37(5): 46-54.
摘要
实际综合能源系统工程在建设之前,需要对多个设计方案进行综合评价,以其作为择优的重要依据。首先,针对综合能源系统多指标评价,从能源、环境和经济3个维度,建立了含有15个指标的评价体系;然后,在此基础上,将AHP-熵权法与灰色关联法相结合,提出了兼顾主观性和客观性的综合评价方法;最后,将所提方法用于某医院综合能源系统评价,得出了综合能源系统的最佳方案,通过对比分析,验证了该方法的有效性和优越性。
MENG Ming, LUO Yang. Multi-index evaluation of inte-grated energy system based on AHP entropy weight method[J]. Electric Power Science and Engineering, 2021, 37(5): 46-54.
Before the construction of the actual integrated energy system project, it is necessary to make a comprehensive evaluation of several design schemes as an important basis for selecting the best. Firstly aiming at the multi-index evaluation of comprehensive energy system, an evaluation system with 15 indexes is established from the three dimensions of energy, environment and economy. And then, on this basis, a comprehensive evaluation method considering subjectivity and objectivity is proposed by combining AHP entropy weight method with grey correlation method. Finally, the proposed method is applied to the comprehensive energy system evaluation of a hospital, and the best scheme of the comprehensive energy system is obtained. The advantages of the method are compared and analysed, and the effectiveness of the method is verified.
[23]
ZHAO H, GUO S, ZHAO H. Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM consi-dering risk preferences[J]. Energy, 2019, 168: 450-461.
[24]
邢家维, 程艳, 于芃, 等. 基于合作博弈的多园区互联综合能源系统低碳经济调度[J]. 山东电力技术, 2024, 51(5):19-29.
XING Jiawei, CHENG Yan, YU Peng, et al. Low-carbon economic scheduling of multiple interconnected park-level integrated energy systems based on cooperative game[J]. Shandong Electric Power, 2024, 51(5):19-29.
[25]
WANG T, TENG F, DENG X, et al. Climate module disparities explain inconsistent estimates of the social cost of carbon in integrated assessment models[J]. One Earth, 2022, 5(7): 767-778.
[26]
彭宇文, 李瑞, 周永旺, 等. 基于IGDT和PSO-SA的综合能源系统鲁棒优化调度方法[J]. 广东电力, 2023, 36(9):60-71.
PENG Yuwen, LI Rui, ZHOU Yongwang, et al. Robust optimal scheduling method for integrated energy system based on IGDT and PSO-SA[J]. Guangdong Electric Power, 2023, 36(9): 60-71.
[27]
李佳欣, 王智伟. 基于模型预测控制的风光储综合能源系统优化调度[J]. 分布式能源, 2024, 9(1): 43-53.
LI Jiaxin, WANG Zhiwei. Optimal dispatching of wind-solar-storage integrated energy system based on model predictive control[J]. Distributed Energy, 2024, 9(1): 43-53.
[28]
中国光伏行业协会. 中国光伏产业发展路线图(2022—2023年)[R/OL]. (2023-02-23)[2023-11-01]. http://www.chinapv.org.cn/road_map/1137.html.
[29]
国家太阳能光热产业技术创新联盟. 中国清洁供热蓄热典型项目汇总[R/OL].(2019-08-07)[2023-11-01]. http://www.cnste.org/html/xiangmu/2019/0807/5287.html.
[30]
吴锦领. 考虑低碳运行的园区综合能源系统优化配置方法与运行优化策略[D]. 武汉: 华中科技大学, 2022.
WU Jinling. Optimal allocation method and operation opti-mization strategy of comprehensive energy system in park considering low-carbon operation[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[31]
赵浩然. 考虑不确定性的生态工业园区综合能源系统优化研究[D]. 北京: 华北电力大学, 2020.
ZHAO Haoran. Study on optimization of comprehensive energy system in eco-industrial park considering uncertainty[D]. Beijing: North China Electric Power University, 2020.
[32]
顾海飞. 面向综合能效的区域多能源系统优化调度策略研究[D]. 南京: 东南大学, 2021.
GU Haifei. Research on optimal scheduling strategy of regional multi-energy system for comprehensive energy efficiency[D]. Nanjing: Southeast University, 2021.
[33]
住房和城乡建设部办公厅. 关于国家标准《零碳建筑技术标准(征求意见稿)》公开征求意见的通知[EB/OL]. (2023-07-13)[2023-11-01]. https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202307/20230724_773337.html.

基金

国家电网公司总部科技项目(5400-202272427A-2-0-ZN)

PDF(4274 KB)

Accesses

Citation

Detail

段落导航
相关文章

/