基于随机降阶与随机响应面法的电网概率潮流计算

马玉涛, 刘青, 李龙威, 刘运锋

分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 90-97.

PDF(5190 KB)
PDF(5190 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 90-97. DOI: 10.16513/j.2096-2185.DE.(2025)010-02-0090-08
应用技术

基于随机降阶与随机响应面法的电网概率潮流计算

作者信息 +

Probabilistic Power Flow Calculation Based on Stochastic Reduced Order Method and Stochastic Response Surface Method

Author information +
文章历史 +

摘要

源荷不确定性是新型电力系统的典型特点之一,因此有必要对考虑源荷变化的电网概率潮流进行计算。针对随机响应面法(stochastic response surface method,SRSM)在构建多项式混沌展开式时通过随机抽样生成样本的盲目性,采用随机降阶法(stochastic reduced order method,SROM)选取重要样本以提高计算结果的准确性。将光照强度、风速参数和负荷作为随机输入变量,建立源荷概率模型并对其进行相关性处理,采用SROM选取三维输入变量的重要样本生成概率潮流的多项式混沌展开式;提出基于SROM-SRSM的电力系统概率潮流计算方法并给出详细计算流程;以改进的IEEE 33节点系统为算例,比较了不同多项式阶数下的模拟时间和精度,采用3阶多项式混沌展开式作为概率潮流计算的基础,比较了不同计算方法下的概率潮流计算结果,得到了潮流状态变量的概率分布。 结果表明:相对于传统的蒙特卡罗方法,所提的SROM-SRSM方法减少了计算耗时,采用随机降阶法优选样本提高了概率潮流计算结果的准确性。

Abstract

Source-load uncertainty is one of the typical characteristics of new power systems, so it is necessary to calculate the probabilistic tidal currents of power grids considering source-load variations. Aiming at the blindness of stochastic response surface method (SRSM) in constructing polynomial chaotic expansion by random sampling to generate samples, this paper adopts stochastic reduced order method (SROM) to select important samples in order to improve the accuracy of calculation results. The light intensity, wind speed parameter and load are taken as random input variables, the source-load probability model is established and its correlation is processed, and the polynomial chaotic expansion of probabilistic tidal current is generated by using SROM to select the important samples of the three-dimensional input variables; the probabilistic tidal current computation method of the electric power system based on SROM-SRSM is proposed and the detailed computation process is given; the improved IEEE 33-node system is used as an example to the simulation time and accuracy under different polynomial orders are compared; the 3rd order polynomial chaotic expansion is used as the basis of probabilistic tidal current calculation; the results of probabilistic tidal current calculation under different calculation methods are compared and the probability distribution of tidal current state variables is obtained. The results show that compared with the traditional Monte Carlo method, the SROM-SRSM proposed in this paper reduces the computation time, and the accuracy of the probabilistic tidal current calculation results is improved by adopting the stochastic descending order method to optimize the samples.

关键词

概率潮流 / 源荷随机性 / 不确定性分析 / 随机响应面法(SRSM) / 随机降阶法(SROM)

Key words

probabilistic power flow / randomness of source-load / uncertainty analysis / stochastic response surface method(SRSM) / stochastic reduced order method(SROM)

引用本文

导出引用
马玉涛, 刘青, 李龙威, . 基于随机降阶与随机响应面法的电网概率潮流计算[J]. 分布式能源. 2025, 10(2): 90-97 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0090-08
Yutao MA, Qing LIU, Longwei LI, et al. Probabilistic Power Flow Calculation Based on Stochastic Reduced Order Method and Stochastic Response Surface Method[J]. Distributed Energy Resources. 2025, 10(2): 90-97 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0090-08
中图分类号: TK01   

参考文献

[1]
郭小璇, 龚仁喜, 鲍海波. 基于随机响应面法考虑随机变量相关性的概率潮流计算[J]. 电网与清洁能源, 2015, 31(2): 104-111,115.
GUO Xiaoxuan, GONG Renxi, BAO Haibo. Probabilistic load flow calculation considering correlative random variable based on stochastic response surface method[J]. Power System and Clean Energy, 2015, 31(2): 104-111,115.
[2]
徐艳春, 阚锐涵, 谢莎莎, 等. 基于改进三点估计的概率谐波潮流计算[J]. 智慧电力, 2023, 51(6): 1-7.
XU Yanchun, KAN Ruihan, XIE Shasha, et al. Calculation of probabilistic harmonic power flow based on improved three-point estimation method[J]. Smart Power, 2023, 51(6): 1-7.
[3]
王玥娇, 郭俊山, 王辉, 等. 基于分布式电源出力独立随机性的配电网随机潮流算法[J]. 山东电力技术, 2023, 50(2): 1-6.
WANG Yuejiao, GUO Junshan, WANG Hui, et al. Probabilistic load flow algorithm of distribution network considering correlation characteristic of multi-type DGs[J]. Shandong Electric Power, 2023, 50(2): 1-6.
[4]
苟笳豪, 张梦婷, 张宇菁, 等. 基于统计学习的概率潮流计算方法综述[J]. 供用电, 2021, 38(11): 33-39.
GOU Jiahao, ZHANG Mengting, ZHANG Yujing, et al. A review of probabilistic power flow calculation method based on statistical learning[J]. Distribution & Utilization, 2021, 38(11): 33-39.
[5]
许海园, 谢博宇, 赵才垒. 计及随机变量相关性的孤岛微电网的全局灵敏度分析[J]. 能源研究与管理, 2024(3): 104-111.
XU Haiyuan, XIE Boyu, ZHAO Cailei. Global sensitivity analysis of islanded microgrids with correlated random variables[J]. Energy Research and Management, 2024(3): 104-111.
[6]
傅明, 童超, 单松兴, 等. 基于多项式正态变换和拟蒙特卡洛法的概率潮流计算[J]. 江西电力, 2022, 46(7): 1-4,9.
FU Ming, TONG Chao, SHAN Songxing, et al. Probabilistic power flow calculation based on polynomial normal transformation and quasi-Monte Carlo method[J]. Jiangxi Electric Power, 2022, 46(7): 1-4,9.
[7]
KAN R, XU Y, LI Z, et al. Calculation of probabilistic harmonic power flow based on improved three-point estimation method and maximum entropy as distributed generators access to distribution network[J]. Electric Power Systems Research, 2024, 230: 110197.
[8]
闫桂杭, 班国邦, 余斌, 等. 考虑风光接入的柔性互联配电网概率潮流算法研究[J]. 供用电, 2022, 39(5): 41-47,60.
YAN Guihang, BAN Guobang, YU Bin, et al. Research on probabilistic power flow algorithm of flexible interconnected distribution network with wind and solar access[J]. Distribution & Utilization, 2022, 39(5): 41-47,60.
[9]
史可鉴, 代子阔, 徐妍, 等. 基于改进半不变量法的概率潮流特性分析[J]. 控制工程, 2024, 31(11):1937-1946.
SHI Kejian, DAI Zikuo, XU Yan, et al. Probabilistic power flow characteristics analysis based on improved semi-invariant method[J]. Control Engineering of China, 2024, 31(11):1937-1946.
[10]
李红, 王文学, 伏祥运, 等. 基于解析法的电-热互联综合能源系统概率潮流计算[J]. 电力工程技术, 2021, 40(5): 151-157.
LI Hong, WANG Wenxue, FU Xiangyun, et al. Probability power flow calculation for electric-thermal interconnected integrated energy system based on analytical method[J]. Electric Power Engineering Technology, 2021, 40(5): 151-157.
[11]
曹宏宇, 梁言贺, 刘惠颖, 等. 考虑风-光-储不确定性的新型电力系统概率潮流计算[J]. 电测与仪表, 2024, 61(6): 87-93.
CAO Hongyu, LIANG Yanhe, LIU Huiying, et al. Probabilistic power flow calculation of novel power system considering uncertainty of wind-light-storage[J]. Electrical Measurement & Instrumentation, 2024, 61(6): 87-93.
[12]
许礼彬, 廖星星. 计及新能源出力不确定性的配电网概率潮流分析[J]. 江西电力, 2024, 48(1): 49-52, 67.
XU Libin, LIAO Xingxing. Probabilistic power flow analysis of distribution network considering uncertainty of new energy output[J]. Jiangxi Electric Power, 2024, 48(1): 49-52, 67.
[13]
高明, 陈家豪, 王丽晓, 等. 考虑光伏不确定性因素的电力系统概率潮流三点估计法[J]. 综合智慧能源, 2022, 44(9): 1-10.
摘要
随着可再生能源和可调负荷接入比例的上升,传统电力系统将面临更复杂的不确定性因素。为有效刻画不确定性因素对系统运行的影响,提出基于三点估计法(3PEM)的概率潮流计算方法,首先采用2m+1策略的三点估计概率采样,减少采样时间,结合半不变量和Cornish-Fisher级数展开理论对计及负荷和光伏发电不确定性的电力系统概率潮流进行定量描述。通过IEEE 33节点系统进行验证,以蒙特卡罗法为参照,结果证明该方法的准确性和快速性。进一步研究对比光伏发电接入系统前后对系统概率潮流的影响,结果表明离光伏发电接入点越近,影响越显著。
GAO Ming, CHEN Jiahao, WANG Lixiao, et al. A three-point probabilistic load flow estimation algorithm for the power system considering photovoltaic uncertainties[J]. Integrated Intelligent Energy, 2022, 44(9): 1-10.

As the access proportions of renewable energy and adjustable load rise,the traditional power system faces increasingly complex uncertainties. In order to effectively describe the influence of uncertain factors on system operation,a probabilistic load flow calculation method based on three-point estimation method(3PEM)is proposed. Firstly,3PEM takes 2 m+1 sampling strategy to reduce the sampling time. Combining cumulant method and Cornish-Fisher series,the probabilistic load flow of the power system taking adjustable load and PV uncertainty into considerations is described quantitatively. The method is verified by an IEEE 33 node system. Taking the results obtained from Monte Carlo method as the reference,the proposed method is proved to be accurate and fast. Further study is made on comparing the effects of PV power grid-connection on the probability load flow,and the results show that the closer the PV power connection point is to the power system,the more significant impact is on the power system.

[14]
彭穗, 罗澍忻, 余浩, 等. 基于风光数据驱动的概率电压稳定评估算法[J]. 信息技术, 2023, 47(12): 94-101.
PENG Sui, LUO Shuxin, YU Hao, et al. Probabilistic voltage stability evaluation algorithm based on data-driven of wind speeds and solar radiation[J]. Information Technology, 2023, 47(12): 94-101.
[15]
蒋水华, 李典庆, 周创兵. 随机响应面法最优概率配点数目分析[J]. 计算力学学报, 2012, 29(3):345-351.
JIANG Shuihua, LI Dianqing, ZHOU Chuangbing. Optimal probabilistic collccation points for stochastic response surface method[J]. Chinese Journal of Computational Mechanics, 2012, 29(3):345-351.
[16]
朱元振, 刘玉田. 考虑源荷不确定性的高风险连锁故障快速筛选[J]. 电力系统自动化, 2023, 47(5): 92-103.
ZHU Yuanzhen, LIU Yutian. Fast screening of high-risk cascading failure considering uncertainties of source and load[J]. Automation of Electric Power Systems, 2023, 47(5): 92-103.
[17]
户秀琼, 梁清清. 交直流电力系统概率潮流计算新方法[J]. 科技与创新, 2023(6): 10-14.
HU Xiuqiong, LIANG Qingqing. A new method for probabilistic power flow calculation of AC/DC power system[J]. Science and Technology & Innovation, 2023(6): 10-14.
[18]
REN Z, LI W, BILLINTON R, et al. Probabilistic power flow analysis based on the stochastic response surface method[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2307-2315.
[19]
孙鑫, 陈金富, 段献忠, 等. 计及高维随机变量的随机响应面法概率潮流计算[J]. 中国电机工程学报, 2018, 38(9): 2551-2560,2823.
SUN Xin, CHEN Jinfu, DUAN Xianzhong, et al. Probabilistic load flow calculation based on stochastic response surface method considering high-dimension stochastic variables[J]. Proceedings of the CSEE, 2018, 38(9): 2551-2560,2823.
[20]
苏宏升, 董晓阳. 基于改进随机响应面法的含风电电力系统概率潮流计算[J]. 太阳能学报, 2021, 42(6): 289-296.
SU Hongsheng, DONG Xiaoyang. Probabilistic power flow calculation of power system considering wind power based on improved stochastic response surface method[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 289-296.
[21]
陈乾, 张沈习, 程浩忠, 等. 基于径向基函数随机响应面法的综合能源系统概率能流计算[J]. 中国电机工程学报, 2022, 42(22):8075-8089.
CHEN Qian, ZHANG Shenxi, CHENG Haozhong, et al. Probabilistic energy flow calculation for integrated energy systems based on radial basis function-stochastic response surface method[J]. Proceedings of the CSEE, 2022, 42(22):8075-8089.
[22]
梁远升, 程康, 王钢, 等. 基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略[J]. 电网技术, 2023, 47(12): 4948-4961.
LIANG Yuansheng, CHENG Kang, WANG Gang, et al. Real-time risk assessment and regulation strategy of new energy islanded distribution network based on probabilistic prediction and stochastic response surface methodology[J]. Power System Technology, 2023, 47(12): 4948-4961.
[23]
韩冬, 马进, 贺仁睦, 等. 基于随机响应面法的电力系统仿真不确定性分析[J]. 电力系统自动化, 2011, 35(24): 12-16, 52.
HAN Dong, MA Jin, HE Renmu, et al. Uncertainty analysis based on stochastic response surface method in power system simulation[J]. Automation of Electric Power Systems, 2011, 35(24): 12-16, 52.
[24]
李雪, 付云跃, 姜涛, 等. 基于多项式混沌展开的交直流系统全纯嵌入概率潮流计算方法[J]. 电力系统自动化, 2024, 48(18):177-188.
LI Xue, FU Yunyue, JIANG Tao, et al. Holomorphic embedding probabilistic power flow nethod of AC/DC power system based on polynomial chaos expansion[J]. Automation of Electric Power Systems, 2024, 48(18):177-188.
[25]
甘艳, 黄菁雯, 吴军, 等. 含风电光伏电力系统概率潮流计算改进方法研究[J]. 电力科学与技术学报, 2023, 38(5): 34-43.
GAN Yan, HUANG Jingwen, WU Jun, et al. Research on probabilistic power flow calculation improvement method of power system including wind and photovoltaic power generation[J]. Journal of Electric Power Science and Technology, 2023, 38(5): 34-43.
[26]
JIANG H, YANG P, LIU C, et al. Probabilistic multi-energy flow calculation method for integrated heat and electricity systems considering correlation of source-load power[J]. Energy Reports, 2023, 9: 1651-1667.
[27]
朱星阳, 刘文霞, 张建华. 考虑大规模风电并网的电力系统随机潮流[J]. 中国电机工程学报, 2013, 33(7):77-85,16.
ZHU Xingyang, LIU Wenxia, ZHANG Jianhua. Probabilistic load flow method considering large-scale wind power integration[J]. Proceedings of the CSEE, 2013, 33(7):77-85,16.
[28]
邓威, 李欣然, 徐振华, 等. 考虑风速相关性的概率潮流计算及影响分析[J]. 电网技术, 2012, 36(4):45-50.
DENG Wei, LI Xinran, XU Zhenhua, et al. Calculation of probabilistic load flow considering wind speed correlation and analysis on influence of wind speed correlation[J]. Power System Technology, 2012, 36(4):45-50.
[29]
ZHU X, LIU C, SU C, et al. Learning-based probabilistic power flow calculation considering the correlation among multiple wind farms[J]. IEEE Access, 2020, 8: 136782-136793.

基金

国家重点研发计划基金项目(2023YFC3009800)

PDF(5190 KB)

Accesses

Citation

Detail

段落导航
相关文章

/