含光伏电源的低压配电网漏电故障识别与触电电流检测

刘晗, 刘金东, 黄鹤鸣, 张莹, 王帅, 吴杰, 池海御

分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 98-108.

PDF(4054 KB)
PDF(4054 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (2) : 98-108. DOI: 10.16513/j.2096-2185.DE.(2025)010-02-0098-11
应用技术

含光伏电源的低压配电网漏电故障识别与触电电流检测

作者信息 +

Leakage Fault Identification and Touch Current Extraction in Low-Voltage Distribution Networks With Photovoltaic Power Supply

Author information +
文章历史 +

摘要

在分布式光伏大规模接入的低压配电网中,现有剩余电流装置 (residual current device,RCD)无法区分剩余电流回路中的光伏异常漏电流与触电时的触电电流,容易发生误动作,导致低压配电网的用电安全和供电可靠性存在隐患。针对该问题,提出一种基于支持向量机(support vector machine,SVM)的漏电故障识别方法和基于极致梯度提升(extreme gradient boosting,XGBoost)的触电电流检测方法。首先,基于变分模态分解(variational mode decomposition,VMD)获取不同漏电场景下剩余电流信号的分量,建立故障特征集;然后,将故障特征作为输入,建立基于麻雀搜索算法(sparrow search algorithm, SSA)优化SVM的漏电故障识别模型,对漏电故障类型进行识别;针对发生触电事故时剩余电流无法真实反映触电的情况,建立基于网格搜索与交叉验证(grid search & cross validation,GSCV)优化XGBoost的回归分析模型,实现从剩余电流中精确提取触电电流。算例结果表明:相较标准SVM和核极限学习机(kernel extreme learning machine,KELM)模型,SSA-SVM模型对漏电故障的识别率最高,平均识别准确率达99.28%;基于GSCV优化的XGBoost回归分析模型提取的触电电流值与真实值实现了良好的拟合;所做工作为具备漏电故障识别和触电电流检测功能的新型RCD开发提供了理论依据。

Abstract

In low-voltage distribution networks with large-scale integration of distributed photovoltaic (PV) systems, existing residual current devices (RCDs) cannot distinguish between abnormal PV leakage currents and electric shock currents in residual current circuits, leading to frequent misoperations. This poses risks to electrical safety and power supply reliability. To solve this problem, this study proposes a leakage fault identification method based on support vector machine (SVM) and an electric shock current detection method based on extreme gradient boosting (XGBoost). Firstly, variational mode decomposition (VMD) is used to extract components of residual current signals under different leakage scenarios, establishing a fault feature dataset. Then, using these features as input, an SVM model optimized by the sparrow search algorithm (SSA) is developed to identify leakage fault types. For cases where residual currents fail to reflect real electric shock conditions, an XGBoost regression model optimized by grid search and cross-validation (GSCV) is built to accurately extract electric shock currents from residual currents. Test results show that compared to standard SVM and kernel extreme learning machine (KELM) models, the SSA-SVM model achieves the highest leakage fault identification accuracy, with an average of 99.28%. The GSCV-XGBoost model accurately fits the extracted electric shock currents to real values. This work provides a theoretical basis for developing new RCDs with leakage fault identification and electric shock current detection capabilities.

关键词

剩余电流装置(RCD) / 光伏漏电流 / 漏电故障识别 / 触电电流检测 / 分布式光伏并网

Key words

residual current device (RCD) / photovoltaic leakage current / leakage fault identification / touch current extraction / distributed photovoltaic grid connection

引用本文

导出引用
刘晗, 刘金东, 黄鹤鸣, . 含光伏电源的低压配电网漏电故障识别与触电电流检测[J]. 分布式能源. 2025, 10(2): 98-108 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0098-11
Han LIU, Jindong LIU, Heming HUANG, et al. Leakage Fault Identification and Touch Current Extraction in Low-Voltage Distribution Networks With Photovoltaic Power Supply[J]. Distributed Energy Resources. 2025, 10(2): 98-108 https://doi.org/10.16513/j.2096-2185.DE.(2025)010-02-0098-11
中图分类号: TK01;TM76   

参考文献

[1]
黄兴华, 范元亮, 张功林, 等. 含分布式光伏中低压配电网多时间尺度协同无功优化策略[J]. 智慧电力, 2024, 52(11):8-15.
HUANG Xinghua, FAN Yuanliang, ZHANG Gonglin, et al. Multi-time scale collaborative reactive power optimization strategy for medium and low voltage distribution networks with PV[J]. Smart Power, 2024, 52(11):8-15.
[2]
曹文君, 张岩, 张安彬, 等. 弱电网条件下分布式光伏并网系统谐振机理及影响特性[J]. 电力建设, 2024, 45(3): 149-159.
摘要
 随着新型电力系统源网荷储协同一体化发展,分布式光伏并网规模的不断扩大,弱电网条件逐渐形成,同时多台逆变器接入配电网末端构成复杂阻抗网络,导致并网系统阻抗特性发生变化,同时增加了系统的谐振风险。为研究弱电网条件下分布式光伏并网系统谐振特征,通过建立系统等效阻抗模型分析关键参数对谐振特性的影响。首先,建立了计及电流内环、电容电流前馈、控制系统延时的逆变器诺顿等值模型。然后,考虑弱电网条件下公共耦合点(point of common coupling, PCC)处负荷特性对系统谐振的影响,构建了表征多并网逆变器、本地负荷、线路以及交流电网等关键设备阻抗交互耦合的分布式光伏并网系统等效模型;进一步,提出了反映逆变器谐波电流以及网侧背景谐波电压等多源谐波扰动对并网电流谐振激励作用的映射模型,揭示了电网阻抗、光伏输出功率、并网逆变器数量变化对系统谐振特性的影响规律。最后,通过仿真验证了所提光伏并网系统等效模型的准确性并分析了相关因素对光伏并网谐振特性的影响。 
CAO Wenjun, ZHANG Yan, ZHANG Anbin, et al. Resonance mechanism and influence characteristics of distributed photovoltaic grid-connected system under weak grid conditions[J]. Electric Power Construction, 2024, 45(3): 149-159.
With the "source-grid-load-storage integration" and large-scale integration of distributed photovoltaic (PV), the grid condition is gradually presenting as a weak grid. Furthermore, multiple inverters are connected to the end of the distribution network to form a complex impedance network that increases the risk of resonance. To investigate the resonance mechanism of a distributed PV system under a weak grid, the Norton model of the inverter, considering the current loop, capacitive current feedforward, and control delay, is derived. Then, considering the influence of the load at the point of common coupling (PCC) on the system impedance characteristics under a weak grid, an equivalent model of a grid-connected system that can reveal the impedance matching relationship between multiple inverters, local loads, and the grid is established under weak grid conditions. Furthermore, a mapping model is proposed to reflect the excitation effect of the harmonic current of the inverter and the background harmonic voltage of the grid side on the resonance of the grid-connected current. The influence of the grid impedance, PV output power, and number of inverters on the resonance characteristics of the grid-connected system is revealed. Finally, the accuracy of the proposed equivalent model is verified through a simulation, and the influence of relevant factors on the PV grid-connected system is analyzed.
[3]
缪雨函, 许寅, 王颖. 面向恢复力提升的高比例分布式光伏接入配电网规划方法[J]. 山东电力技术, 2024, 51(8):1-9.
MIAO Yuhan, XU Yin, WANG Ying. Planning of distribution system integrated with high-penetration photovoltaic for the resilience improvement[J]. Shandong Electric Power, 2024, 51(8):1-9.
[4]
代守乐, 李萍. 基于CART决策树的110 kV供电区域分布式光伏承载能力测算模型[J]. 分布式能源, 2024, 9(3): 82-88.
DAI Shoule, LI Ping. Calculation model of distributed photovoltaic carrying capacity for 110 kV power supply area based on CART decision tree[J]. Distributed Energy, 2024, 9(3): 82-88.
[5]
王凯欣, 方刚, 程尧, 等. 非隔离型并网光伏发电系统中漏电流的分析与保护[J]. 太阳能, 2021, 325(5): 72-77.
WANG Kaixin, FANG Gang, CHENG Yao, et al. Analysis and protection of leakage current in non-isolated grid-connected PV power generation system[J]. Solar Energy, 2021, 325(5): 72-77.
[6]
肖华锋, 王晓标, 张兴, 等. 非隔离光伏并网逆变技术的现状与展望[J]. 中国电机工程学报, 2020, 40(4): 1038-1054,1397.
XIAO Huafeng, WANG Xiaobiao, ZHANG Xing, et al. State-of-the-art and future trend of transformerless photovoltaic grid-connected inverters[J]. Proceedings of the CSEE, 2020, 40(4): 1038-1054,1397.
[7]
CHENG Da, ZHANG Baoliang, XIONG Suqin, et al. Residual current detection prototype and simulation method in low voltage DC system[J]. IEEE Access, 2022, 10: 51100-51109.
[8]
黄超艺, 陈宏, 王晨. 低压配电网接地方式及三级剩余电流保护应用实践[J]. 供用电, 2019, 36(12): 29-34.
HUANG Chaoyi, CHEN Hong, WANG Chen. Application practice of grounding mode and three-level residual current protection in LV distribution network[J]. Distribution & Utilization, 2019, 36(12): 29-34.
[9]
郭行干. 农村家庭触电保护系统的研讨[J]. 农村电气化, 2023(12): 95-98.
GUO Xinggan. Discussion on the protection system for electric shock in rural households[J]. Rural Electrification, 2023(12): 95-98.
[10]
李奎, 陆俭国, 武一, 等. 自适应漏电保护技术及其应用[J]. 电工技术学报, 2008, 23(10): 53-57.
LI Kui, LU Jianguo, WU Yi, et al. Adaptive technology of leakage current operation protection and its application[J]. Transactions of China Electrotechnical Society, 2008, 23(10): 53-57.
[11]
夏越, 杜松怀, 李春兰, 等. 中国剩余电流保护技术与装置的发展趋势[J]. 农业工程学报, 2010, 26(S2): 151-155.
XIA Yue, DU Songhuai, LI Chunlan, et al. Development tendency of residual current protection technology and device in China[J]. Transactions of the CSAE, 2010, 26(S2): 151-155.
[12]
周超群, 陈先凯, 孙荣可, 等. 基于幅值差动原理的低压配电网剩余电流保护方法[J]. 供用电, 2022, 39(2): 58-64.
ZHOU Chaoqun, CHEN Xiankai, SUN Rongke, et al. Residual current protection method for low voltage distribution network based on amplitude differential principle[J]. Distribution & Utilization, 2022, 39(2): 58-64.
[13]
梁栋, 王玮, 孙中玉, 等. TN-C-S系统双突变量电流分离漏电保护方法[J]. 电力系统保护与控制, 2022, 50(15): 168-177.
LIANG Dong, WANG Wei, SUN Zhongyu, et al. A current separation leakage protection method using double mutations for TN-C-S systems[J]. Power System Protection & Control, 2022, 50(15): 168-177.
[14]
韩晓慧, 杜松怀, 苏娟, 等. 触电信号暂态特征提取及故障类型识别方法[J]. 电网技术, 2016, 40(11): 3591-3596.
HAN Xiaohui, DU Songhuai, SU Juan, et al. Fault transient feature extraction and fault type identification for electrical shock signals[J]. Power System Technology, 2016, 40(11): 3591-3596.
[15]
张祥珂, 王雅静, 窦震海, 等. 基于自适应VMD和优化DFNN的剩余电流识别[J]. 电测与仪表, 1-13[2023-08-19]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220817.1802.018.html.
ZHANG Xiangke, WANG Yajing, DOU Zhenhai, et al. Residual current recognition based on adaptive VMD and optimized DFNN[J]. Electrical Measurement & Instru-mentation, 1-13[2023-08-19]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220817.1802.018.html.
[16]
关海鸥, 杜松怀, 李春兰, 等. 基于有限脉冲反应和径向基神经网络的触电信号识别[J]. 农业工程学报, 2013, 29(8): 187-194.
GUAN Haiou, DU Songhuai, LI Chunlan, et al. Recognition of electric shock signal based on FIR filtering and RBF neural network[J]. Transactions of the CSAE, 2013, 29(8): 187-194.
[17]
李春兰, 罗杰, 石砦, 等. 基于小波分析和概率神经网络的触电事故识别方法[J]. 江苏大学学报(自然科学版), 2023, 44(1): 75-81,88.
LI Chunlan, LUO Jie, SHI Zhai, et al. Electric shock identification method based on probabilistic neural network and wavelet analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(1): 75-81,88.
[18]
蔡智萍, 郭谋发, 魏正峰. 基于BP神经网络的低压配电网生命体触电识别方法研究[J]. 电网技术, 2022, 46(4): 1614-1623.
CAI Zhiping, GUO Moufa, WEI Zhengfeng. Research on recognition method of living body shock in low-voltage distribution network based on BP neural network[J]. Power System Technology, 2022, 46(4):1614-1623.
[19]
慕静茹, 喻锟, 曾祥君, 等. 考虑多扰动因子的含光伏电源低压台区漏电故障检测[J]. 南方电网技术, 2024, 18(10): 134-141.
MU Jingru, YU Kun, ZENG Xiangjun, et al. Leakage fault detection in low-voltage station area with photovoltaic power supply considering multi-disturbance factor[J]. Southern Power System Technology, 2024, 18(10): 134-141.
[20]
汪自虎, 王文天, 惠慧, 等. 基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别[J]. 高压电器, 2024, 60(6): 203-211.
WANG Zihu, WANG Wentian, HUI Hui, et al. Leakage recognition method of photovoltaic connected to distribution network based on neighborhood component analysis and optimized kernel extreme learning machine[J]. High Voltage Apparatus, 2024, 60(6): 203-211.
[21]
李春兰, 王静, 石砦, 等. 基于VMD-LSTM的触电电流提取方法研究[J]. 湖南大学学报(自然科学版), 2022, 49(2): 149-159.
LI Chunlan, WANG Jing, SHI Zhai, et al. Research on extraction method of electric shock current based on VMD-LSTM[J]. Journal of Hunan University (Natural Science Edition), 2022, 49(2):149-159.
[22]
YU S, WANG J, ZHANG X. Effect of water on parasitic capacitance of photovoltaic panel[C]// 2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, OH, USA: IEEE, 2017: 4414-4419.
[23]
常宇健, 李加驹. 电缆泄漏电流在线监测相关理论与仿真研究[J]. 石家庄铁道大学学报(自然科学版), 2017, 30(1): 99-103.
CHANG Yujian, LI Jiaju. Theoretical study and simulation verification about online monitoring of cable leakage current[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2017, 30(1): 99-103.
[24]
苏娜. 光伏逆变器地电流分析与抑制[D]. 杭州: 浙江大学, 2012.
SU Na. Ground current analysis and suppression for grid-connencted photovoltaic inverters[D]. Hangzhou: Zhejiang University, 2012.
[25]
刘永梅, 盛万兴, 杜松怀. 一种面向剩余电流保护装置的触电阻抗建模方法[J]. 河北工业大学学报, 2017, 46(4): 15-23.
LIU Yongmei, SHENG Wanxing, DU Songhuai. An electric shock impedance modeling method of living organisms in low-voltage distribution network[J]. Journal of Hebei University of Technology, 2017, 46(4): 15-23.
[26]
叶远波, 李端超, 谢民, 等. 基于SSA-SVM的继电保护装置状态评估方法研究[J]. 电力系统保护与控制, 2022, 50(8): 171-178.
YE Yuanbo, LI Duanchao, XIE Min, et al. A state evaluation method for a relay protection device based on SSA-SVM[J]. Power System Protection & Control, 2022, 50(8): 171-178.
[27]
XU Dongliang, XU Junjun, QIAN Cheng, et al. A pseudo-measurement modelling strategy for active distribution networks considering uncertainty of DGs[J]. Protection and Control of Modern Power Systems, 2024, 9(5): 1-15.
[28]
SOUZA J S, SANTOS M L, BAYMA R S, et al. Analysis of window size and statistical features for SVM-based fault diagnosis in bearings[J]. IEEE Latin America Transactions, 2021, 19(2): 243-249.
[29]
GUO Yu, YANG Dongfang, ZHANG Yang, et al. Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network[J]. Protection and Control of Modern Power Systems, 2022, 7(3): 602-618.
[30]
RAMESH J V N, ABIRAMI T, GOPALAKRISHNAN T, et al. Sparrow search algorithm with stacked deep learning based medical image analysis for pancreatic cancer detection and classification[J]. IEEE Access, 2023, 11: 111927-111935.

基金

国网北京市电力公司科技项目(520213240001)

PDF(4054 KB)

Accesses

Citation

Detail

段落导航
相关文章

/