大型能源站水蓄冷/热系统设计及模拟分析

宋宏升

分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 46-51.

PDF(2842 KB)
PDF(2842 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 46-51. DOI: 10.16513/j.2096-2185.DE.1901088
应用技术

大型能源站水蓄冷/热系统设计及模拟分析

作者信息 +

Design and Simulation Analysis of Cold (Heat) Water Storage System in Large Energy Station

Author information +
文章历史 +

摘要

为了验证某大型冷热电分布式多能耦合能源站系统中的水蓄冷(热)系统是否完全满足设计要求,基于能源站设计典型日的24 h逐时波动冷热负荷需求,对水蓄能系统相关的核心技术指标(雷诺数、弗劳德数、水蓄能系统蓄冷及蓄热效率等)进行了评价计算,并采用CFD软件对布水器的均流效果以及蓄能水池内的温度场分布的变化进行了模拟验证。该多能耦合系统由燃气内燃发电机组、烟气热水余热型溴化锂冷温水机组、螺杆式地源热泵机组、冷(热)蓄能水池、10 kV离心式电制冷冷水机组、燃气真空热水锅炉等部分构成。评价计算及模拟分析的结果表明,蓄能系统的布水器各项选型参数及蓄能效率均完全可以满足设计要求。

Abstract

In order to evaluate and verify whether the cold (heat) water storage system in a distributed multi-energy coupled energy station system fully meets the design requirements, according to the 24 hours hourly fluctuating cooling and heating load demand on typical design days, the evaluation calculation of the key technical indicators (Reynolds number, Froude number, energy storage tank efficiency, etc.) related to the water storage system are carried out. The professional CFD software is used to simulate and verification the current sharing effect of the water distributor and the change of temperature distribution in the water storage tank. The multi-energy coupled system consists of gas-fired internal combustion generator sets, waste heat recoverable lithium bromide chillers, screw ground source heat pump units, chilled water thermal and water heat storage tank, 10 kV centrifugal electric refrigeration units and vacuum gas-fired hot water boilers. The results of evaluation calculation and simulation analysis show that the various parameters of the water distributor of the energy storage system and the energy storage efficiency can fully meet the design requirements.

关键词

能源站 / 水蓄冷(热) / 评价计算 / 模拟验证 / 蓄冷及蓄热效率 / CFD模拟

Key words

energy station / chilled water thermal and water heat storage / evaluation calculation / simulation verification / cold and heat storage efficiency / CFD simulation

引用本文

导出引用
宋宏升. 大型能源站水蓄冷/热系统设计及模拟分析[J]. 分布式能源. 2020, 5(2): 46-51 https://doi.org/10.16513/j.2096-2185.DE.1901088
Hongsheng SONG. Design and Simulation Analysis of Cold (Heat) Water Storage System in Large Energy Station[J]. Distributed Energy Resources. 2020, 5(2): 46-51 https://doi.org/10.16513/j.2096-2185.DE.1901088
中图分类号: TK01   

参考文献

[1]
KAMAL A R. Theoretical and experimental analysis of stratified storage thanks[C]//22nd Intersociety Energy Conversion Engineering Conf. 1987.
[2]
KAMAL A R. A numerical study on stratified liquid storage tanks[C]//7th International Conference on Thermal Energy Storage, 1: 289-294.
[3]
WILDIN M W, TRUMAN C R. Performance of stratified vertical cylindrical thermal storage tanks (part Ⅰ): Scale model[M]. ASHRAE Transactions 1989, CH-89-19-2.
[4]
YOO J, WILDIN M W. Initial formation of a thermocline in stratified thermal storage tanks[J]. ASHRAE Transations1986, 92: 280-292.
[5]
TRUMAN C R, WILDIN M W, YOO J. Scale modeling of stratified water thermal storage tanks[C]//International Symposium on Modeling Environmental Flows, The Joint ASCE/ASME Mechanics Conference, Albuquerque, NM, June, 1985.
[6]
WILDIN M W. Diffuser design for naturally stratified thermal storage[J]. ASHRAE Transactions, 1990, 96(1): 1094-1102.
[7]
STEWART W, BECKER B, CAI L, et al. Downward impinging flows for stratified chilled water storage[C]//Topics in Heat Transfer-ASME 28th National Heat Transfer Conference. HTD1992, 206(2): 131-138.
[8]
OPPEL F J, A J GHAJAR, MORETTI P M. A numerical and experimental study of stratified thermal storage[J]. ASHRAE Transactions, 1986, 92: 2a.
[9]
CALDWELL J S, BAHNFLETH W P. Identification of mixing effects in stratified chilled-water storage tanks by analysis of time series temperature data[J]. ASHRAE Transactions, 1998, 104(2): 366-376.
[10]
方贵银. 空调水蓄冷温度分层动态特性研究[J]. 四川制冷1999(2): 7-10.
FANG Guiyin. Study on stratified dynamic characteristics of air conditioning water storage temperature[J]. Sichuan refrigeration, 1999(2): 7-10.
[11]
方贵银. 空调水蓄冷过程试验研究[J]. 制冷学报2000(4): 29-34.
FANG Guiyin. Experimental investigation of charging process for chilled water thermal storage system of air-conditioning[J]. Journal of Refrigeration, 2000 (4): 29-34.
[12]
于航,邓育涌,孙斌,等. 温度分层型水蓄冷罐的仿真研究[J]. 能源技术2006, 27(3): 120-122.
YU Hang, DENG Yuyong, SUN Bin, et al. Simulation study of temperature stratified water storage tank[J]. Energy Technology, 2006, 27 (3): 120-122.
[13]
胡国霞,于航. 自然分层型水蓄冷槽布水器的模拟[J]. 能源技术2007, 28(3): 237-240, 243.
HU Guoxia, YU Hang. Simulation of natural stratified water storage tank water distributor[J]. Energy Technology, 2007, 28 (3): 237-240, 243.
[14]
陈斌,叶彩花. 燃气冷热电三联供与地源热泵耦合系统的应用[J]. 煤气与热力2014, 34(9): 27-31.
CHEN Bin, YE Caihua. Application of combined cooling, heating and power system coupled with ground-source heat pump[J]. Gas & Heat, 2014, 34(9): 27-31.
[15]
莫愈恩,陆斌. 水蓄冷空调系统在南宁某酒店的应用[J]. 电力需求侧管理2006, 8(6): 34-36.
MO Yuen, LU Bin. Application of water storage air conditioning system in a hotel in Nanning city[J]. Power Demand Side Management, 2006, 8(6): 34-36.

PDF(2842 KB)

Accesses

Citation

Detail

段落导航
相关文章

/