水光多能互补清洁能源智能发电技术

黄鹤, 秦岭, 喻洋洋, 魏道万

分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 21-26.

PDF(1349 KB)
PDF(1349 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 21-26. DOI: 10.16513/j.2096-2185.DE.1901118
学术研究

水光多能互补清洁能源智能发电技术

作者信息 +

Smart-Power Generation Technology of Clean Energy with Water-Light Multi-Energy Complementary

Author information +
文章历史 +

摘要

多能互补是未来清洁能源发展的主要特征之一,既有利于发展清洁能源,也有利于实现节能减排。为了提高水光多能互补清洁能源项目的智能化水平,以贵州象鼻岭水电站和象鼻岭水光互补农业光伏电站为研究对象,对清洁能源建设、水光互补智能发电调度、水光电站统一监控等关键技术进行了探索和实践,研制了一套适用于水光多能互补电站的优化规划和调度运行的技术体系。工程实例表明,该技术体系充分发挥了水电站和光伏电站的互补特性,提高了工程效益和电能质量,可为其他水光互补电站建设提供参考。

Abstract

Multi-energy complementarity is one of the main features of clean energy development in the future, which is not only conducive to the development of clean energy, but also conducive to energy conservation and emission reduction. In order to improve the intelligent level of water-light multi-energy complementary clean energy projects, Guizhou Xiangbiling Hydropower Station and Xiangbi Ridge Water-Photovoltaic Complementary Agricultural Photovoltaic Power Station are the research objects. we have explored and practiced key technologies such as clean energy construction, water-photovoltaic complementary intelligent power generation dispatching, and unified monitoring of hydro-optical power stations. Technical system for optimal planning and dispatch operation of multi-energy complementary power stations. Engineering examples show that this technology system fully utilizes the complementary characteristics of hydropower stations and photovoltaic power stations, improves engineering efficiency and power quality, and can provide references for the construction of other hydro-optical complementary power stations.

关键词

多能互补 / 清洁能源 / 智能发电

Key words

multi-energy complementary / clean energy / smart-power generation

引用本文

导出引用
黄鹤, 秦岭, 喻洋洋, . 水光多能互补清洁能源智能发电技术[J]. 分布式能源. 2020, 5(2): 21-26 https://doi.org/10.16513/j.2096-2185.DE.1901118
He HUANG, Ling QIN, Yangyang YU, et al. Smart-Power Generation Technology of Clean Energy with Water-Light Multi-Energy Complementary[J]. Distributed Energy Resources. 2020, 5(2): 21-26 https://doi.org/10.16513/j.2096-2185.DE.1901118
中图分类号: TK71; TK81   

参考文献

[1]
程海花,寇宇,周琳,等. 面向清洁能源消纳的流域型风光水多能互补基地协同优化调度模式与机制[J]. 电力自动化设备2019, 39(10): 61-70.
CHENG Haihua, KOU Yu, ZHOU Lin, et al. Collaborative optimal dispatching mode and mechanism of watershed-type wind-solar-water multi-energy complementary bases for clean energy absorption[J]. Electric Power Automation Equipment, 2019, 39(10): 61-70.
[2]
国家可再生能源中心 国际可再生能源发展报告[M]. 北京:中国经济出版社,2013: 10-40.
[3]
武俊丽. 发电效益最大化的水光互补方案优化设计研究[J]. 智能城市2017, 3(10): 154-154.
[4]
单鹏珠,张柏,李勇,等. 张河湾抽水蓄能电站AVC子站系统设计及应用实现 [J]. 电网与清洁能源2017, 33(4): 137-142.
SHAN Pengzhu, ZHANG Bai, LI Yong, et al. Design of AVC sub system and its realization for Zhanghewan pumped storage plant[J]. Power System and Clean Energy, 2017, 33(4): 137-142.
[5]
姜海军. 大中型抽水蓄能电站国产计算机监控系统设计[C]//中国水利学会水力发电专业委员会. 2006年水力发电学术研讨会论文集,2006: 206-209.
[6]
龚传利. 龙羊峡水光互补自动发电控制策略及应用[C]//中国水力发电工程学会信息化专委会、中国水力发电工程学会水电控制设备专委会. 中国水力发电工程学会信息化专委会2013年年会优秀论文集,2013: 81-82, 132.
[7]
乐成贵,周杨. 龙羊峡水光互补光伏电站SCADA解决方案[J]. 可编程控制器与工厂自动化2015(4): 31-33.
[8]
陈麒宇,张芳,章锐. 风水协同运行控制信息的传输[J]. 发电技术2018, 39(1): 53-57.
CHEN Qiyu, ZHANG Fang, ZHANG Rui. Communication technology for wind power and hydropower coordinated operation control[J]. Power Generation Technology, 2018, 39(1): 53-57.
[9]
区允杰,孙景涛,陈刚. 一种含抽水蓄能电站的可再生能源系统综合优化调度方法[J]. 广东电力2019, 32(10): 79-88.
OU Yunjie, SUN Jingtao, CHEN Gang, et al. Integrated optimization scheduling method for renewable energy system with pumped storage power station[J]. Guangdong Electric Power, 2019, 32(10): 79-88.
[10]
庞秀岚,张伟. 特约文章:水光互补技术研究及应用[J]. 水力发电学报2017, 36(7): 1-13.
PANG Xiulan, ZHANG Wei. Hydro-photovoltaic complementary technology research and application[J]. Journal of Hydroelectric Engineering, 2017, 36(7): 1-13.
[11]
钱梓锋,李庚银,安源,等. 龙羊峡水光互补的日优化调度研究[J]. 电网与清洁能源2016, 32(4): 69-74.
QIAN Zifeng, LI Gengyin, AN Yuan, et al. Research on the optimization of daily operation of Longyangxia hydro-photovoltaic power system[J]. Power System and Clean Energy, 2016, 32(4): 69-74.
[12]
刘娟楠,王守国,王敏. 水光互补系统对龙羊峡水电站综合运用影响分析[J]. 电网与清洁能源2015, 31(9): 83-87.
LIU Juannan, WANG Shouguo, WANG Min. Influence analysis of hydro-photovoltaic power complementary system of Longyangxia hydro-power station[J]. Power System and Clean Energy, 2015, 31(9): 83-87.
[13]
刘吉臻,王庆华,房方,等. 数据驱动下的智能发电系统应用架构及关键技术[J]. 中国电机工程学报2019, 39(12): 3578-3587.
LIU Jizhen, WANG Qinghua, FANG Fang, et al. Data-driven-based application architecture and technologies of smart power generation[J]. Proceedings of the CSEE, 2019, 39(12): 3578-3587.
[14]
陶佳,丁腾波,宁康红,等. 智慧能源战略框架及全过程实施方案[J]. 发电技术2018, 39(2): 129-134.
TAO Jia, DING Tengbo, NING Kanghong, et al. Strategy and whole course implementation schemes of smart energy [J]. Power Generation Technology, 2018, 39(2): 129-134.
[15]
崔青汝,朱子凡. 智能发电运行控制技术[J]. 热力发电2019, 48(9): 28-33.
CUI Qingru, ZHU Zifan. Operation control technology for intelligent power generation[J]. Thermal Power Generation, 2019, 48(9): 28-33.

PDF(1349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/