PDF(1568 KB)
PDF(1568 KB)
PDF(1568 KB)
基于分级定价与梯级考核机制的风电场日发电计划优化申报方法
Optimal Declaring Method of Daily Power Generation Schedule for Wind Farm Based on Stepped Pricing and Penalizing Mechanism
若对大规模并网运行的风电场继续延用粗放的预测粗差管理模式,则既不利于在保障风电场发电收益的前提下激发其主动改善并网品质、增强发电计划执行度的积极性,更不利于电网在降低调节负担或有效控制边际调节成本的基础上切实提高风能消纳空间。为此,从平等化风电场市场主体地位出发,探讨如何通过改善并网品质以增强发电计划或交易合同商业信誉度的方式,竞争更高上网电价、赚取更高发电收益的问题。具体的,提出了一种基于风电场并网风电品质的分级定价与梯级考核机制,即根据风电场申报的发电计划趋势曲线特征、计划容窄度、商业信誉度、违约处罚度等指标实施分级上网电价与梯级考核机制。在此基础上,建立了以风电场收益最大化为目标的日发电计划优化申报模型。算例表明,分级定价与梯级考核机制,相较于传统的预测粗差管理机制,可以更好地激励风电场提供优质并网风电、减轻电网调节负担,从而营造风电场和电网达成双赢的市场环境。
Predictive gross error management mode has been widely used in large-scale grid-connected wind farms. However, this mode can't stimulate farms to improve wind power quality and enhance schedule execution on the premise of guaranteeing the revenue of power generation, also can't help the grid to improve wind power absorption on the basis of reducing the burden of regulation or effectively controlling the marginal cost of regulation. From the subject status equality of wind power market, this paper explored how to enhance the commercial credit of schedule or contract through improving wind power quality for competing higher price and revenue, and proposed a new stepped pricing and penalizing mechanism based on the wind power quality. The mechanism evaluates wind power grades based on the trend curve characteristics, deviation tolerance, and credibility and deviation penalty of power generation schedules declared by wind power farms. For different grades of schedules, the corresponding stepped prices and penalties are adopted. On this basis, an optimal declaring model of daily power generation schedule of wind farm was proposed for maximizing its revenue. Results of case analysis show that the proposed new mechanism can more effectively stimulate wind farms to sell high-quality wind power, and hence to reduce the regulation burden of grid and create a win-win market environment for farms and grids.
风电场 / 发电计划 / 分级定价 / 梯级考核 / 信誉度 / 容窄度
wind farm / power generation schedule / stepped pricing / penalizing / credibility / deviation tolerance
| [1] |
S2
陈炳森,胡华丽. 我国风电发展概况及展望[J]. 电网技术,2008, 32(): 279-282.
S2
|
| [2] |
陈雨果,李嘉龙,刘文涛,等. 电力市场环境下发电计划关键技术综述[J]. 广东电力,2018, 31(6): 8-13.
|
| [3] |
张丽英,叶廷路,辛耀中,等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报,2010, 30(25): 1-9.
|
| [4] |
国家电网公司. 风电场接入电网技术规定:Q/GDW 1392—2015[S]. 北京:国家电网公司,2009.
|
| [5] |
张宁,周天睿,段长刚,等. 大规模风电场接入对电力系统调峰的影响[J]. 电网技术,2010, 34(1): 152-158.
|
| [6] |
鲁宗相,黄瀚,单葆国,等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化,2017, 41(9): 12-18.
|
| [7] |
薛禹胜,雷兴,薛峰,等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报,2014, 34(29): 5029-5040.
|
| [8] |
蔡秋娜,杨韵,陆秋瑜,等. 适应电力市场多成分直接交易的日内发电计划模型和方法[J]. 广东电力,2017, 30(5): 35-39+76.
|
| [9] |
鲁宗相,李海波,乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报,2017, 37(1): 9-19.
|
| [10] |
雷亚洲,王伟胜,印永华,等. 风电对电力系统运行的价值分析[J]. 电网技术,2002, 26(5): 10-24.
|
| [11] |
田廓,曾鸣,鄢帆,等. 考虑环保成本和风电接入影响的动态经济调度模型[J]. 电网技术,2011, 35(6): 55-59.
|
| [12] |
陈道君,龚庆武,张茂林,等. 考虑能源环境效益的含风电场多目标优化调度[J]. 中国电机工程学报,2011, 31(13): 10-17.
|
| [13] |
周双喜,王海超,陈寿孙. 风力发电运行价值分析[J]. 电网技术,2006, 30(14): 98-102.
|
| [14] |
孙元章,吴俊,李国杰. 风力发电对电力系统的影响[J]. 电网技术,2007, 31(20): 55-62, 70.
|
| [15] |
周玮,彭昱,孙辉,等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报,2009, 29(25): 13-18.
|
| [16] |
赵珊珊,张东霞,印永华,等. 风电的电价政策及风险管理策略[J]. 电网技术,2011, 35(5): 142-145.
|
| [17] |
李璐,郑亚先,陈长升,等. 风电的波动成本计算及应用研究[J]. 中国电机工程学报,2016, 36(19): 5155-5163, 5396.
|
| [18] |
吴亭苇. 风电的平衡成本及分段价值研究[D]. 南京:东南大学,2016.
|
| [19] |
陈长升. 风电的系统成本分析及分段价值发现研究[D]. 南京:东南大学,2015.
|
| [20] |
柴大鹏,史慧,薛松,等. 风电并网附加成本确定性模型和随机性模型的模拟仿真[J]. 电网技术,2014, 38(3): 687-693.
|
| [21] |
孙金. 风电运行成本与价值分析[D]. 长沙:湖南大学,2012.
|
| [22] |
袁铁江,晁勤,吐尔逊·伊不拉音,等. 大规模风电并网电力系统动态清洁经济优化调度的建模[J]. 中国电机工程学报,2010, 30(31): 7-13.
|
| [23] |
王魁. 含大规模风电电力系统多时间尺度协调的若干问题研究[D]. 武汉:华中科技大学,2013.
|
| [24] |
匡洪海,王建辉,张瀚超,等. 一种新型的风电功率爬坡段识别方法[J]. 电网技术,2019, 43(5): 1752-1759.
|
| [25] |
任双雪. 风电功率陡坡特性与预测问题研究[D]. 哈尔滨:哈尔滨工业大学,2014.
|
| [26] |
谷兴凯,范高锋,王晓蓉,等. 风电功率预测技术综述[J]. 电网技术,2007, 31(2): 335-338.
|
/
| 〈 |
|
〉 |