风火打捆送出系统静态安全域边界性质分析

刘瑞宽, 彭虹桥, 余浩, 彭穗, 许亮, 黄欣

分布式能源 ›› 2020, Vol. 5 ›› Issue (1) : 16-21.

PDF(1050 KB)
PDF(1050 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (1) : 16-21. DOI: 10.16513/j.2096-2185.DE.2002002
学术研究

风火打捆送出系统静态安全域边界性质分析

作者信息 +

Analysis of Boundary Properties of Steady-State Security Region of Wind-Thermal-Bundled Sending System

Author information +
文章历史 +

摘要

近年来随着风电大规模接入,系统静态失稳模式由功角失稳主导转向电压失稳主导。基于奇异摄动理论的多时间尺度降阶建模方法,建立了适用于机理分析的风火打捆送出系统简化模型。结合系统功角失稳和电压失稳的判据,利用小扰动法分析了风火打捆送出系统静态安全域边界性质,由功角失稳边界、功角-电压混合失稳边界以及电压失稳边界组成,并提出了3种失稳模式分界点的求解方法。识别风火打捆送出系统静态安全域边界的失稳模式有利于调度员分析系统失稳的主导因素,并有针对性地采取控制措施将系统拉回到安全状态。

Abstract

In recent years, wind power is connecting to the grid on a large scale, and the static instability mode of the system is moving from angle instability to voltage instability. Based on the singular perturbation theory and multi time scale reduced order modeling, a simplified model of wind-thermal-bundled system is established for mechanism analysis. According to the criterions of power angle instability and voltage instability, the boundary properties of the steady-state security region of wind-thermal-bundled system are analyzed with the small disturbance method, which is composed of angle instability boundary, hybrid angle-voltage instability boundary and voltage instability boundary. The solution process of breakpoints of three instability modes are proposed. The results are helpful for the dispatch department to analyze the leading factors of instability and take targeted measures to pull the system back to the safe region.

关键词

风火打捆 / 静态安全域 / 多时间尺度降阶建模 / 电压失稳 / 功角失稳

Key words

wind-thermal-bundled / steady-state security region / multi time scale reduced order modeling / voltage instability / angle instability

引用本文

导出引用
刘瑞宽, 彭虹桥, 余浩, . 风火打捆送出系统静态安全域边界性质分析[J]. 分布式能源. 2020, 5(1): 16-21 https://doi.org/10.16513/j.2096-2185.DE.2002002
Ruikuan LIU, Hongqiao PENG, Hao YU, et al. Analysis of Boundary Properties of Steady-State Security Region of Wind-Thermal-Bundled Sending System[J]. Distributed Energy Resources. 2020, 5(1): 16-21 https://doi.org/10.16513/j.2096-2185.DE.2002002
中图分类号: TM712   

参考文献

[1]
HUA Wen, XU Zheng, LI Huijie, et al. Economic analysis of large capacity of wind power with long distance transmission[J]. Electrical Engineering, 2010(8): 33-37.
华文,徐政,李慧杰,等. 大容量风电远距离送出的经济性研究[J]. 电气技术2010(8): 33-37.
[2]
SANIYE· Maihemuti, WANG Haiyun, ZHANG Jiang, et al. Study on voltage stability of wind-thermal bundle transmission system based on virtual inertia control[J]. Computer Simulation, 2019, 36(8): 108-112, 270.
萨妮耶·麦合木提,王海云,张强,等. 含虚拟惯量控制风火打捆系统静态稳定性研究[J]. 计算机仿真2019, 36(8): 108-112, 270.
[3]
HOU Kaiyuan, XIA Deming, LIU Yongqi, et al. Steady-state Stability analysis of wind-thermal bundled sending system[J]. Automation of Electric Power Systems, 2016, 40(22): 154-159.
侯凯元,夏德明,刘永奇,等. 风火联运送出系统的静态稳定性分析[J]. 电力系统自动化2016, 40(22): 154-159.
[4]
MAO Feng, GUI Qianjin, WANG Lei, et al. Assessment on the total transfer capability of AC/DC system for integrated wind-thermal power[J]. Electric Power, 2019, 52(1): 69-75.
毛峰,桂前进,王磊,等. 风火打捆交直流外送系统区域间输电能力评估[J]. 中国电力2019, 52(1): 69-75.
[5]
ZHANG Haibo, ZHANG Linya, JIANG Weiyong. Calculation method for maximum penetration ratio of wind power in wind-thermal-bundled HVDC sending system[J]. Automation of Electric Power Systems, 2019, 43 (16): 52-60.
张海波,张琳雅,蒋维勇. 风火打捆直流外送系统中极限风电渗透率的计算方法[J]. 电力系统自动化2019, 43(16): 52-60.
[6]
LIU Yongjiang, YANG Zhihui, TANG Yun, et al. Order reduction and stability analysis for multi-time scale power systems part one fundamental theory[J]. Automation of Electric Power Systems, 2003, 27(1): 5-10.
刘永强,杨志辉,唐云,等. 多时间尺度电力系统的模型降阶及稳定性分析(一)基本理论[J]. 电力系统自动化2003, 27(1): 5-10.
[7]
LIU Yongjiang, LEI Wen, WU Jie, et al. Order reduction and stability analysis for multi-time scale power systems part two order reduction and loss of mid-term and long-term stability[J]. Automation of Electric Power Systems, 2003, 27 (2): 45-51.
刘永强,雷文,吴捷,等. 多时间尺度电力系统的模型降阶及稳定性分析(二)电力系统的降阶与中长期失稳[J]. 电力系统自动化2003, 27 (2): 45-51.
[8]
MA Fan, MA Weiming, FU Lijun, et al. A model order reduction method for nonlinear multi-time scale systems[J]. Proceedings of the CSEE, 2013, 33 (16): 162-170.
马凡,马伟明,付立军,等. 一种非线性多时间尺度系统模型降阶方法[J]. 中国电机工程学报2013, 33(16): 162-170.
[9]
CASTRO R G, FERREIRA DE JESUS J M. A wind park reduced-order model using singular perturbations theory[J]. IEEE Transactions on Energy Conversion, 1996, 11(4): 735-741.
[10]
AHMED-ZAID S, SAUER P, PAI M. Reduced order modeling of synchronous machines using singular perturbation[J]. IEEE Transactions on Circuits and Systems, 1982, 29(11): 782-786.
[11]
SAKSENA V R, O'REILLY J, KOKOTOVIC P V. Singular perturbations and time-scale methods in control theory: survey 1976—1983[J]. Automatica, 1984, 20(3): 273-293.
[12]
LUO Xuzhi, YI Jun, ZHANG Jian, et al. Research on influence of integrated wind plants on power angle stability based on output characteristic of DFIG[J]. Power System Technology, 2015, 39 (12): 3401-3407.
罗煦之,易俊,张健,等. 结合DFIG功率特性研究风电并网对系统功角稳定性的影响[J]. 电网技术2015, 39 (12): 3401-3407.
[13]
YE Yida, WEI Linjun, RUAN Jiayang, et al. A generic reduced-order modeling hierarchy for power-electronic interfaced generators with the quasi-constant-power feature[J]. Proceedings of the CSEE, 2017, 37(14): 3993-4001.
叶一达,魏林君,阮佳阳,等. 电力电子接口电源的准功率特性降阶建模体系[J]. 中国电机工程学报2017, 37(14): 3993-4001.
[14]
RIAZA R. Singularity-induced bifurcations in lumped circuits[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2005, 52(7): 1442-1450.
[15]
MARSZALEK W, TRZASKA Z W. Singularity-induced bifurcations in electrical power systems[J]. IEEE Transactions on Power Systems, 2005, 20(1): 312-320.

基金

南方电网重点规划专题研究项目(030000QQ00180022)

编委: 蒋毅恒
PDF(1050 KB)

Accesses

Citation

Detail

段落导航
相关文章

/