PDF(1627 KB)
PDF(1627 KB)
PDF(1627 KB)
高寒高海拔地区风光互补热电联供系统多目标优化研究
Multi Objective Optimization of Wind-Solar Hybrid Heat and Power Generation System in Frigid and High-Altitude Area
为提升高寒高海拔地区风光互补热电联供系统的综合性能,以系统投资成本与负荷缺失率最小、当量CO2年排量最大为目标,建立系统容量配置的优化模型。根据西藏那区全年日照与风力情况,应用非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-II)对风光互补热电联供系统的容量配置开展多目标优化研究。结果表明:优化后,系统全年负荷缺失率为4.6%、设备投资成本为16.2×104元、CO2年减排量为95.4 t;系统设备中,集热器的投资约占设备总投资的50%,光伏电池与蓄电池的投资次之,风机与储热罐投资最少;系统逐时负荷缺失率主要集中在室外温度较低的时段。多目标优化设计很好地平衡了风光互补热电联供对经济性、可靠性与环境性的需求,验证了方法的有效性,为高寒高海拔地区风光互补系统的优化设计提供了理论指导。
In order to improve the comprehensive performance of wind-solar hybrid co-generation system for severely cold and high altitude regions, a capacity optimization model was established. A multi-objective optimization was performed using the Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) to maximize annual CO2 emission reduction, minimize system investment cost and loss of power supply probability. According to the annual sunshine and wind conditions in that area of Tibet, the capacity optimal design for wind-solar hybrid co-generation system was carried out using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-II). The results show that the loss of power supply probability, investment cost and annual CO2 emission reduction are 4.6%, 162 000 ¥ and 95.4 t, respectively. The solar collector accounts for about 50% of the total investment, followed by the photovoltaic cell and battery. While, the investment of fan and heat storage tank is the least. Besides, the hourly loss of power supply probability is mainly concentrated in the period of low outdoor temperature. The multi-objective optimization can balance the requirements of economy, reliability and environment for wind-solar hybrid co-generation system, which verifies the effectiveness of this method. It provides theoretical guidance for the optimal design of the wind-solar hybrid co-generation system in severely cold and high altitude regions.
wind-solar hybrid complementary / co-generation / capacity configuration / multi-objective optimization
| [1] |
廖其龙,李宜,刘欢. 互补发电技术体系与发展趋势[J]. 攀枝花学院学报,2019, 36(5): 43-47.
|
| [2] |
彭程,张卫存. 风光互补发电系统研究回顾与展望[J]. 桂林航天工业学院学报,2019, 24(2): 208-214.
|
| [3] |
刘婧珂,吉培荣,刘浩,等. 基于差分进化粒子群算法的储能系统容量优化[J]. 电力科学与工程,2019, 35(7): 35-41.
|
| [4] |
|
| [5] |
齐志远,郭佳伟,李晓炀. 基于联合概率分布的风光互补发电系统优化配置[J]. 太阳能学报,2018, 39(1): 203-209.
|
| [6] |
徐璋,李莎,胡小坚,等. 基于粒子群算法的风光互补发电系统配置优化设计[J]. 浙江工业大学学报,2018, 46(6): 650-655.
|
| [7] |
唐浩,杨国华,王鹏珍,等. 基于CO2排放量的风光互补发电系统容量优化配置[J]. 电力建设,2017, 38(3): 108-114.
|
| [8] |
胡滢,臧大进. 基于多目标PSO算法的风光互补发电系统优化[J]. 安徽理工大学学报(自然科学版), 2017, 37(5): 39-45.
|
| [9] |
陈天,蔡泽祥,谢鹏,等. 基于改进微分进化算法的风光互补系统发电容量优化配置[J]. 电力科学与技术学报,2017, 32(3): 22-28.
|
| [10] |
|
| [11] |
杨冬,王世文,王勇,等. 并网型风电场扩展光伏互补发电容量优化配置[J]. 山东大学学报(工学版), 2019, 49(5): 44-51.
|
| [12] |
|
| [13] |
秦泽宇,马瑞,张强,等. 考虑风光互补的电力系统多目标随机优化发电方案研究[J]. 电力科学与技术学报,2015, 30(3): 53-60.
|
| [14] |
卢喜梅. 太阳能平板空气集热器内部流动与传热特性分析及优化研究[D]. 石家庄:石家庄铁道大学,2017.
|
| [15] |
|
/
| 〈 |
|
〉 |