企业综合能源规划优化设计探索与实践

苗建军

分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 51-58.

PDF(1703 KB)
PDF(1703 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 51-58. DOI: 10.16513/j.2096-2185.DE.2003003
综合能源专栏

企业综合能源规划优化设计探索与实践

作者信息 +

Practice Research on the Integrated Energy Optimal Design Solution for Industrial Enterprise

Author information +
文章历史 +

摘要

能源的供应和消费是影响企业运行的重要因素,根据企业用能特点,提出了多目标强耦合的综合能源规划优化设计理论方法和多能耦合算法,结合实际算例,以Matlab为数据分析和建模平台进行仿真计算和分析,建立了负荷分析与预测模型、装机配置模型、技术经济分析模型、风险压力测试模型等分析工具,进而得出了最优的综合能源规划优化方案,证明了该优化设计方法和算法的有效性和实用性,为企业建立多能互补、高效节能、绿色低碳、源-网-荷-储一体化的综合能源系统提供了理论依据。

Abstract

The supply and consumption of energy is an important factor affecting the operation of enterprises. According to the characteristics of energy consumption of enterprises, this paper put forward a multi-objective and strong coupling comprehensive energy planning optimization design theoretical method and multi-energy coupling algorithm. Combined with practical examples, the simulation calculation and analysis were carried out with Matlab as the data analysis and modeling platform, The load analysis and prediction model, installed capacity allocation model, technical and economic analysis model, risk stress test model and other analysis tools were established, and the optimal comprehensive energy planning optimization scheme was obtained, which proved the effectiveness and practicability of the optimization design method and algorithm, It provides a theoretical basis for enterprises to establish a comprehensive energy system with multi energy complementary, high efficiency and energy saving, green and low carbon, source grid load storage integration

关键词

综合能源 / 优化设计 / 多目标建模 / 多能耦合算法

Key words

integrated energy / optimal design / multi-object modeling / multi-energy coupling algorithm

引用本文

导出引用
苗建军. 企业综合能源规划优化设计探索与实践[J]. 分布式能源. 2020, 5(4): 51-58 https://doi.org/10.16513/j.2096-2185.DE.2003003
Jianjun MIAO. Practice Research on the Integrated Energy Optimal Design Solution for Industrial Enterprise[J]. Distributed Energy Resources. 2020, 5(4): 51-58 https://doi.org/10.16513/j.2096-2185.DE.2003003
中图分类号: TK01   

参考文献

[1]
钟迪,李启明,周贤,等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电2018, 47(2): 1-5.
ZHONG Di, LI Qiming, ZHOU Xian, etc. Research status and development trends for key technologies of multi-energy complementary comprehensive utilization system[J]. Thermal power generation, 2018, 47(2): 1-5.
[2]
叶琪超,楼可炜,张宝,等. 多能互补综合能源系统设计及优化[J]. 浙江电力2018, 37(7): 5-12.
YE Qichao, LOU Kewei, ZHANG Bao, et al. Design and optimization of multi-energy complementary integrated energy system[J]. Zhejiang Electric Power, 2018, 37(7): 5-12.
[3]
ZHANG X, SHAHIDEHPOUR M, ALABDULWAHAB A, et al. Optimal expansion planning of energy hub with multiple energy infrastructures[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2302-2311.
[4]
付学谦,孙宏斌,郭庆来,等. 能源互联网供能质量综合评估[J]. 电力自动化设备2016, 36(10): 1-7.
FU Xueqian, SUN Hongbin, GUO Qinglai, et al. Comprehensive assessment of energy supply quality of energy Internet[J]. Electric Power Automation Equipment, 2016, 36(10): 1-7.
[5]
贾宏杰,穆云飞,余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设2015, 36(1): 16-25.
JIA Hongjie, MU Yunfei, YU Xiaodan. Thoughts on the development of China's comprehensive energy system[J]. Electricity Construction, 2015, 36(1): 16-25.
[6]
MEHTA N, SINITSYN N A, BACKHAUS S, et al. Safe control of thermostatically controlled loads with installed timers for demand side management[J]. Energy Conversion and Management, 2014(86): 784-791.
[7]
邢龙,张沛超,方陈,等. 基于广义需求侧资源的微网运行优化[J]. 电力系统自动化2013, 37(12): 7-12, 133.
XING Long, ZHANG Peichao, FANG Chen, et al. Microgrid operation optimization based on generalized demand side resources[J]. Automation of Electric Power Systems, 2013, 37(12): 7-12, 133.
[8]
钟跃,能源互补评价指标及其应用[D]. 长沙:湖南大学,2013.
ZHONG Yue, Energy complementary evaluation index and its application[D]. Changsha: Hunan University, 2013.
[9]
曾鸣,杨雍琦,李源非,等. 能源互联网背景下新能源电力系统运营模式及关键技术初探[J]. 中国电机工程学报2016, 36(3): 681-691.
ZENG Ming, YANG Yongqi, LI Yuanfei, et al. The preliminary research for key operation mode and technologies of electrical power ystem with renewable energy sources under energy internet[J]. Proceedings of the CSEE, 2016, 36(3): 681-691.
[10]
曾鸣,杨雍琦,刘敦楠,等. 能源互联网“源-网-荷-储”协调优化运营模式及关键技术[J]. 电网技术2016, 36(3): 681-691.
ZENG Ming, YANG Yongqi, LIU Dunnan, et al. “Generation-grid-load-storage”coordinative optimal operation mode of energy internet and key technologies[J]. Power System Technology, 2016, 36(3): 681-691.
[11]
伍小亭,王砚,宋晨,等. 基于暖通专业视角的区域能源系统思考——概念、规划、设计[J]. 暖通空调2019, 49(1): 2-14, 24.
WU Miaoting, WANG Xian, SONG Chen, et al. Distributed energy system from a professional perspective: Concept, planning and design[J]. HVAC, 2019, 49(1): 2-14, 24.
[12]
牛铭,黄伟,郭佳欢,等. 微网并网时的经济运行研究[J]. 电网技术2010, 33(11): 38-42.
NIU Ming, HUANG Wei, GUO Jiahuan, et al. Research on economic operation of grid-connected micro grid[J]. Power System Technology, 2010, 33(11): 38-42.
[13]
卫志农,张思德,孙国强,等. 基于碳交易机制的电—气互联网综合能源系统低碳经济运行[J]. 电力系统自动化2016, 40(15): 9-16.
WEI Zhinong, ZHANG Side, SUN Guoqiang. Low carbon economy operation of electricity gas Internet comprehensive energy system based on carbon trading mechanism[J]. Automation of Electric Power Systems, 2016, 40(15): 9-16.
[14]
中华人民共和国住房和城市建设部. 燃气冷热电三联供工程技术规程:CJJ 145—2010[S]. 北京:中国建筑工业出版社,2010.
Ministry of Housing and Urban-Rural Development of the People's Republic of China(MOHURD). Technical specification for gas-fired combined cooling, heating and power engineering: CJJ 145-2010[S]. Beijing: China Architecture Publishing & Media Co., Ltd., 2010.
[15]
国家能源局. 燃气分布式供能站设计规范:DLT 5508—2015[S]. 北京:中国电力出版社,2015.
National Energy Administration. Code for design of gas-fired distributed energy station: DLT 5508—2015[S]. Beijing: China Electric Power Press, 2015.

PDF(1703 KB)

Accesses

Citation

Detail

段落导航
相关文章

/