适用于光伏发电直流并网的DC-DC变换器

任向阳, 周攀, 戴朝波

分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 27-34.

PDF(2013 KB)
PDF(2013 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (2) : 27-34. DOI: 10.16513/j.2096-2185.DE.2003008
学术研究

适用于光伏发电直流并网的DC-DC变换器

作者信息 +

DC-DC Converter for DC Grid-Connected Photovoltaic Power Generation Systems

Author information +
文章历史 +

摘要

未来以光伏发电为代表的可再生能源在国家政策的推动下将得到大规模的推广应用,分布式新能源就地消纳会成为未来配电网的重要特征。未来配电网中,变频电器、电动汽车充换电站、数据中心以及新型电子类终端等新型负荷不断涌现,负荷类型趋于多样化。因此,光伏发电升压汇集接入直流电网是未来发展的一个重要方向。提出了适合光伏发电直流并网的模块化DC-DC变换器级联拓扑结构,分析了影响模块间输出均压的因素,提出了一种简化控制策略。另外,还研究了模块间均压控制策略。最后,在PSCAD/EMTDC仿真平台验证了影响模块间均压的因素,并验证了所提控制策略的有效性。

Abstract

As the representative of the renewable energy, the future of wind power and photovoltaic power generation will get a large-scale promotion and application due to the national policy. Distributed new energy local consumption will become an important feature of the future distribution network. In the future distribution network, the new type of load, such as variable frequency electric appliance, electric vehicle charging station, data center and new electronic terminal, are emerging, and the load type tends to be diversified. Therefore, the photovoltaic power generation boost accessing to the DC power grid is an important direction in future. The cascade topology of modular DC-DC converters which is suitable for photovoltaic DC grid-connected is proposed, and the factors affecting the output pressure among modules are analyzed. A simplified control strategy is proposed. In addition, the control strategy between modules is also studied. Finally, the PSCAD/EMTDC simulation platform is used to verify the factors that affect the pressure between modules and verify the effectiveness of the proposed control strategy.

关键词

光伏发电 / 直流并网 / DC-DC变换器

Key words

photovoltaic power generation / direct current (DC)grid-connected / DC-DC converter

引用本文

导出引用
任向阳, 周攀, 戴朝波. 适用于光伏发电直流并网的DC-DC变换器[J]. 分布式能源. 2020, 5(2): 27-34 https://doi.org/10.16513/j.2096-2185.DE.2003008
Xiangyang REN, Pan ZHOU, Chaobo DAI. DC-DC Converter for DC Grid-Connected Photovoltaic Power Generation Systems[J]. Distributed Energy Resources. 2020, 5(2): 27-34 https://doi.org/10.16513/j.2096-2185.DE.2003008
中图分类号: TK29   

参考文献

[1]
李文婷,刘宏,陈慧玲. 国内外太阳能光伏发电发展综述[J]. 青海电力2004(4): 3-6.
LI Wenting, LIU Hong, CHEN Hui ling. Developing summarization of domestic and intermational solar energy PV generation[J]. Qinghai Electric Power, 2004(4): 3-6.
[2]
李威辰. 共直流母线型模块化光伏并网发电系统相关关键技术研究[D]. 杭州:浙江大学,2014.
LI Weichen. Common DC bus-based modular PV grid-connected generation systems[D]. Hangzhou: Zhejiang University, 2014.
[3]
DE DONCKER R W A A, DIVAN D M. A three-phase soft-switched high-power-density DC/DC converter for high-power applications[J]. IEEE Transactions on Industry Applications, 1991, 27(1): 63-73.
[4]
DEMETRIADES G D, NEE H P. Characterization of the dual-active bridge topology for high-power applications employing a duty-cycle modulation[C]//IEEE Power Electronics Specialists Conference. IEEE, 2008: 2791-2798.
[5]
BAI H, NIE Z, MI C C. Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional DC-DC converters[J]. IEEE Transactions on Power Electronics, 2010, 25(6): 1444-1449.
[6]
OGGIER G G, GARCIA G O, OLIVA A R. Switching control strategy to minimize dual active bridge converter losses[J]. IEEE Transactions on Power Electronics, 2009, 24(7): 1826-1838.
[7]
武琳,张燕枝,李子欣,等. 一种隔离式双向全桥DC/DC变换器的控制策略[J]. 电机与控制学报2012, 16(12): 21-27.
WU Lin, ZHANG Yanzhi, LI Zixin, et al. A control strategy of isolated bidirectional full bridge DC/DC converter[J]. Electric Machines and Control, 2012, 16(12): 21-27.
[8]
罗宇强,谭建成,董国庆. 级联式光伏电站直流并网拓扑及其控制策略[J]. 电力系统保护与控制2016, 44(13): 14-19.
LUO Yuqiang, TAN Jiancheng, DONG Guoqing, et al. Topology of direct-current connecting cascaded photo-voltaic power station to power grid and its control strategy[J]. Power System Protection and Control, 2016, 44(13): 14-19.
[9]
杨晓峰,郑琼林,林智钦,等. 用于直流电网的大容量DC/DC变换器研究综述[J]. 电网技术2016, 40(3): 670-677.
YANG Xiaofeng, ZHENG Trillion Q, LIN Zhiqin, et al. Survey of high-power DC/DC converter for HVDC grid application[J]. Power System Technology, 2016, 40(3): 670-677.
[10]
阮新波. 脉宽调制DC/DC全桥变换器的软开关技术[M]. 北京:科学出版社,2013.
[11]
皮之军. 移相全桥ZVS变换器及其数字控制技术研究[D]. 武汉:华中科技大学,2006.
PI Zhijun. Research on phase-shift full bridge ZVS converter and its digital control technology candidate[D]. Wuhan: Huazhong University of Science and Technology, 2006.
[12]
殷文贵. 移相全桥ZVS变换器研究[D]. 上海:上海交通大学,2012.
YIN WenGui. Study of shift-phase full-bridge ZVS converters[D]. Shanghai: Shanghai Jiao Tong Unviersity, 2012.
[13]
张容荣. 输入并联输出串联组合变换器控制策略的研究[D]. 南京:南京航空航天大学,2008.
ZHANG Rongrong. A novel control strategy for input-parallel output-series DC/DC converter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[14]
刘欢欢. 大功率DC-DC变换器串并联技术的研究[D]. 成都:西南交通大学,2013.
LIU Huanhuan. Research on high power DC-DC converter series-parallel technology[D]. Chengdu: Southwest Jiaotong University, 2013.
[15]
刘革莉,金新民. UC3875移相谐振控制芯片原理及应用[J]. 电源技术应用2001, 4(6): 289-292.

PDF(2013 KB)

Accesses

Citation

Detail

段落导航
相关文章

/