基于正态分布的典型负荷日拟合方法

韩宏志,杨洋,郜宁,马勤勇,赵建平,袁铁江

分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 69-73.

PDF(979 KB)
PDF(979 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 69-73. DOI: 10.16513/j.2096-2185.DE.2004016
学术研究

基于正态分布的典型负荷日拟合方法

作者信息 +

Fitting Method of Typical Daily Load Based on Normal Distribution

Author information +
文章历史 +

摘要

电网负荷曲线的预测,储能电站的选址与容量配置都需要选取合适的典型负荷日。综合考虑电网负荷数据,提出一种基于正态分布的典型负荷日拟合办法。将每天同一时刻的负荷所出现的频率作为其概率,由于不同天同一时刻的负荷值相差不多,可以将其近似认为服从正态分布,利用最大似然估计法拟合成正态分布曲线,并利用每个概率分布的期望作为该时刻的负荷值。将日负荷率与数据平均日负荷率之差的绝对值作为评价指标1,将选取的典型负荷日与数据所有负荷日相关系数绝对值的平均值作为评价指标2,利用电网负荷数据对上述典型负荷日拟合方法进行验证,结果显示,用该方法所拟合的典型负荷日更具有一般性。

Abstract

In order to predict the load curve of power grid, the location and capacity allocation of energy storage power station need to select the appropriate typical load day. Considering a large number of load data, a typical load day fitting method based on normal distribution is proposed. The frequency of the load at the same time every day is regarded as its probability. Because the load values at the same time in different days are not much different, it is approximately considered to obey the normal distribution. Then, the maximum likelihood estimation method is used to synthesize the normal distribution curve, and the expectation of each probability distribution is calculated as the load value at that time. The absolute value of the difference between the daily load rate and the average daily load rate of the data is taken as the evaluation index 1, and the average value of the absolute value of the selected typical load day and all the daily load correlation coefficients of the data is taken as the evaluation index 2. Finally, the load data of power grid is used to verify the above typical load day fitting method, the results show that the typical load day fitted by this method is more general.

关键词

典型负荷日 / 正态分布 / 拟合 / 最大似然估计法 / 相关系数

Key words

typical load day / normal distribution / fitting / maximum likelihood estimation / correlation

引用本文

导出引用
韩宏志, 杨洋, 郜宁, . 基于正态分布的典型负荷日拟合方法[J]. 分布式能源. 2020, 5(4): 69-73 https://doi.org/10.16513/j.2096-2185.DE.2004016
Hongzhi HAN, Yang YANG, Ning GAO, et al. Fitting Method of Typical Daily Load Based on Normal Distribution[J]. Distributed Energy Resources. 2020, 5(4): 69-73 https://doi.org/10.16513/j.2096-2185.DE.2004016
中图分类号: TM71   

参考文献

[1]
徐虹卿,张宇献,邢作霞. 考虑风电不确定性的风电储能混合系统协调优化计算[J]. 电器与能效管理技术2019(9): 53-59, 70.
XU Hongqing, ZHANG Yuxian, XING Zuoxia. Coordinative optimization calculation for wind energy storage hybrid system considering wind power uncertainty[J]. Electrical & Energy Management Technology, 2019(9): 53-59, 70.
[2]
郇嘉嘉,左郑敏. 广东电网负荷特性典型日选取研究[J]. 电力科学与技术学报2017, 32(1): 164-170.
YING Jiajia, ZUO Zhengmin. Study on typical day selection of load characteristics of Guangdong power grid[J]. Journal of Electric Power Science and Technology, 2017, 32 (1): 164-170.
[3]
孟令奎,段红伟,黄长青,等. 一种基于语义聚类的典型日负荷曲线选取方法[J]. 华北电力大学学报(自然科学版), 2013, 40(1): 43-48.
MENG lingkui, DUAN Hongwei, HUANG Changqing, et al. A method of selecting typical daily load curve based on semantic clustering[J]. Journal of North China Electric Power University (Natural Science Edition), 2013, 40(1): 43-48
[4]
徐邦恩,蔺红. 基于改进模糊聚类的典型日负荷曲线选取方法[J]. 电测与仪表2019, 56(4): 21-26.
XU Bangen, LIN Hong. Selection method of typical daily load curve based on improved fuzzy clustering[J]. Electrical Measurement and Instrument, 2019, 56 (4): 21-26.
[5]
张国庆,张海静,杨东亮,等. 一种基于反一致自适应聚类的典型日选取方法[J]. 电力科学与工程2017, 33(7): 26-31.
ZHANG Guoqing, ZHANG Haijing, YANG Dongliang et al. A typical day selection method based on anti consistent adaptive clustering[J]. Electric Power Science and Engineering, 2017, 33(7): 26-31.
[6]
苗润华. 基于聚类和孤立点检测的数据预处理方法的研究[D]. 北京:北京交通大学,2012.
MIAO Runhua. Data preprocessing based on clustering and outlier detection[D]. Beijing: Beijing Jiaotong University, 2012
[7]
国网天津市电力公司. 一种基于AP聚类的远景年典型日负荷预测方法:CN201910855941.6[P]. 2019-12-13.
[8]
杜乾,邓帅,王嗣常. 计及温度区间的电网负荷典型日筛选方法研究[J]. 安徽电力2017, 34(4): 27-30.
DU Qian, DENG Shuai, WANG Sichang. Study on typical day selection method of grid load considering temperature range[J]. Anhui Electric Power, 2017, 34 (4): 27-30.
[9]
侯若松,杨书强,郭力. 微电网的典型日选取方法[J]. 云南电力技术2019, 47(2): 16-22.
HOU Rusong, YANG Shuqiang, GUO Li. Typical day selection method of microgrid[J]. Yunnan Electric Power Technology, 2019, 47 (2): 16-22.
[10]
李翔,顾洁. 运用聚类算法预测地区电网典型日负荷曲线[J]. 电力与能源2013, 34(1): 47-50.
LI Xiang, GU Jie. Forecasting typical daily load curve of regional power grid by clustering algorithm[J]. Power and Energy, 2013, 34 (1): 47-50.
[11]
郭力,杨书强,刘一欣,等. 风光储微电网容量规划中的典型日选取方法[J]. 中国电机工程学报2020, 40(8): 2468-2479.
GUO Li, YANG Shuqiang, LIU Yixin, et al. The typical day selection method in the capacity planning of wind energy storage micro grid[J]. Proceedings of the CSEE, 2020, 40(8): 2468-2479.
[12]
李勤超,周立中,赵艳龙,等. 基于分布式光伏典型日曲线的统调负荷预测方法[J]. 浙江电力2019, 38(6): 113-117.
LI Qinchao, ZHOU Lizhong, ZHAO Yanlong, et al. Load forecasting method based on typical daily curve of distributed photovoltaic[J]. Zhejiang Electric Power, 2019, 38 (6): 113-117.
[13]
朱明星,赵闪闪,徐斌. 一种多窗口宽度的主导间谐波频谱分布的算法[J]. 电力电容器与无功补偿2018, 39(1): 96-101, 131.
ZHU Mingxing, ZHAO Shanshan, XU Bin. An algorithm of dominant interharmonics spectrum distribution with multi window width[J]. Power Capacitor and Reactive Power Compensation, 2018, 39 (1): 96-101, 131.
[14]
王磊,张建宾,余昆,等. 基于典型负荷曲线的配电网线损计算方法研究[J]. 智慧电力2020, 48(3): 124-130.
WANG Lei, ZHANG Jianbin, YU Kun, et al. Study on calculation method of distribution network line loss based on typical load curve[J]. Smart Power, 2020, 48 (3): 124-130.
[15]
SACCENTI E, HENDRIKS M H W B, SMILDE A K. Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models[J]. Scientific Reports, 2020, 10(1): 438.

基金

国家自然科学基金(51577163)
国网新疆电力有限公司科技项目(SGXJDK00DYJS1900097)

PDF(979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/