基于超临界二氧化碳循环的电热储能系统

郑开云

分布式能源 ›› 2020, Vol. 5 ›› Issue (5) : 43-47.

PDF(957 KB)
PDF(957 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (5) : 43-47. DOI: 10.16513/j.2096-2185.DE.2006007
应用技术

基于超临界二氧化碳循环的电热储能系统

作者信息 +

Electrothermal Energy Storage System Based on Supercritical Carbon Dioxide Cycle

Author information +
文章历史 +

摘要

超临界二氧化碳循环具有应用范围广、效率高、系统简化、设备紧凑的优点,储能是超临界二氧化碳循环潜在的应用领域之一,针对大规模电力储能发展的迫切需求,提出了基于超临界二氧化碳循环的电热储能系统的概念设计。采用铜作为相变储热材料,以超临界二氧化碳循环作为热电转换装置,建立了分流再压缩超临界二氧化碳循环和简单回热超临界二氧化碳循环模式的储能系统方案,并运用热力学方法对储能效率进行了分析。研究结果表明,基于超临界二氧化碳循环的电热储能系统储能效率有望达到60%,结合低温余热回收,可进一步提高储能效率到67%,并且此电热储能系统具有较好的经济性。因此,基于超临界二氧化碳循环的电热储能系统可用于构建大规模电力储能系统。

Abstract

Supercritical carbon dioxide cycle has many advantages, such as wide application range, high efficiency, simple system and compact equipment. Energy storage is one of the potential application fields of supercritical carbon dioxide cycle. In view of the urgent demand of large-scale power energy storage development, the conceptual design of electric thermal energy storage system based on supercritical carbon dioxide cycle is proposed. Using copper as phase change heat storage material and supercritical carbon dioxide cycle as thermoelectric conversion device, the energy storage system designs of recompression supercritical carbon dioxide cycle and simple regenerative supercritical carbon dioxide cycle mode are established, and the energy storage efficiency is analyzed by thermodynamic method. The results show that the energy storage efficiency of the electric thermal energy storage system based on supercritical carbon dioxide cycle is expected to reach 60%, and combined with low-temperature waste heat recovery, the energy storage efficiency can be further improved to 67%. And, the electric thermal energy storage system has good economy. Therefore, the electric thermal energy storage system based on supercritical carbon dioxide cycle can be used to construct large-scale electric energy storage system.

关键词

超临界二氧化碳循环 / 电热储能 / 储能效率 / 相变储热

Key words

supercritical carbon dioxide cycle / electrothermal energy storage / energy storage efficiency / phase change heat storage

引用本文

导出引用
郑开云. 基于超临界二氧化碳循环的电热储能系统[J]. 分布式能源. 2020, 5(5): 43-47 https://doi.org/10.16513/j.2096-2185.DE.2006007
Kaiyun ZHENG. Electrothermal Energy Storage System Based on Supercritical Carbon Dioxide Cycle[J]. Distributed Energy Resources. 2020, 5(5): 43-47 https://doi.org/10.16513/j.2096-2185.DE.2006007
中图分类号: TK02   

参考文献

[1]
何英. 2020年我国储能规模将达42 GW[N]. 中国能源报,2018-04-09(9).
[2]
CHEHADE Z, MANSILLA C, LUCCHESE P, et al. Review and analysis of demonstration projects on power-to-X pathways in the world[J]. International journal of hydrogen energy, 2019, 44(51): 27637-27655.
[3]
IRWIN L, LE MOULLEC Y. Turbines can use CO2 to cut CO2[J]. Science, 2017, 356(6340): 805-806.
[4]
郑开云. 超临界二氧化碳动力循环研发现状及趋势分析[J]. 能源工程2017(5): 35-41, 51.
ZHENG Kaiyun. Analysis of current status and trend of research and development on supercritical carbon dioxide power cycle[J]. Energy Engineering, 2017(5): 35-41, 51.
[5]
郑开云. 超临界二氧化碳循环应用于火力发电的研究现状[J]. 南方能源建设2017, 4(3): 39-47.
ZHENG Kaiyun. Current status of research on the application of supercritical carbon dioxide power cycle in fossil fired power generation[J]. Southern Energy Construction, 2017, 4(3): 39-47.
[6]
ALLAM R J, PALMER M R, BROWN J, et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide[J]. Energy Procedia, 2013, 37: 1135-1149.
[7]
ALLAM R J, FETVEDT J E, FORREST B A, et al. The oxy-fuel, supercritical CO2 Allam cycle: New cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany, 2014.
[8]
ROBERT F. Service, fossil power, guilt free[J]. Science, 2017, 356 (6340): 796-799.
[9]
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles Part A: Methodology and base case [J]. Energy, 2012, 45: 375-385.
[10]
MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles Part B: Alternative system configuration[J]. Energy, 2012, 45: 386-396.
[11]
LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159.
[12]
Siemens Gamesa inaugurates innovative electro thermal energy storage system [EB/OL]. [2019-06-12].
[13]
郑开云. 超临界工质布雷顿循环热力学分析[J]. 南方能源建设2018, 5(3): 42-47.
ZHENG Kaiyun. Thermodynamic analysis of supercritical working fluid brayton cycle[J]. Southern Energy Construction, 2018, 5(3): 42-47.
[14]
郑开云. 集成吸收式热泵的超临界CO2循环聚光太阳能热发电系统[J]. 上海节能2019(12): 969-973.
ZHENG Kaiyun. Supercritical CO2 power cycle integrated with absorption heat pump for concentrated solar power system[J]. Shanghai Energy Conservation, 2019(12): 969-973.
[15]
郑开云. 超临界CO2循环热电联产系统初步研究[J]. 分布式能源2017, 2(3): 47-51.
ZHENG Kaiyun. Preliminary investigation on the supercritical carbon dioxide cycle cogeneration system[J]. Distributed Energy, 2017, 2(3): 47-51.
[16]
孟祥飞,庞秀岚,崇锋,等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术2019, 8(): 38-42.
摘要
S1
MENG Xiangfei, PANG Xiulan, CHONG Feng, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(): 38-42.
S1

PDF(957 KB)

Accesses

Citation

Detail

段落导航
相关文章

/