考虑不同电价的电动汽车充电服务最优网格划分

覃文泽,李强,姚方,文福拴

分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 59-68.

PDF(2949 KB)
PDF(2949 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (4) : 59-68. DOI: 10.16513/j.2096-2185.DE.2007002
学术研究

考虑不同电价的电动汽车充电服务最优网格划分

作者信息 +

Optimal Grid Generation of EV Charging Service Considering Different Electricity Prices

Author information +
文章历史 +

摘要

针对电动汽车(electric vehicle,EV)充电设施的规划问题,提出基于不同电价的最优网格划分方法。首先,从建设成本、运营成本、电网效益、用户效益、充电站效益分析充电设施的经济性。其次,根据功能和行为规律将城市分为五类区域,分区域分析私家车、出租车、公交车的出行规律和充放电规律,对私家车首次出行时刻、出行链、停留时间、出租车载客间隔时间进行概率建模,并考虑电价对用户充放电意愿的影响,建立负荷模型。最后,提出采用蒙特卡洛模拟并结合Voronoi图原理实现最优网格划分的步骤。计算结果表明,通过调整电价,可以引导EV用户放电和有序充电,在用户自身获益的同时,为电网降低峰谷差和运行成本,为充电站提供更高的经济效益。

Abstract

Aiming at the planning of electric vehicle (EV) charging facilities, an optimal grid generation method based on different electricity prices is proposed. Firstly, the economics of charging facilities are analyzed from the perspectives of construction cost, operation cost, power grid benefit, user benefit and charging station benefit. Second, according to the function and behavior rule, cities can be divided into five groups, area, analysis the travel law of private cars, taxis, buses and the rule of the charge and discharge, the private cars for the first time, travel time, travel chain, residence time, the taxi passenger time interval probability modeling, and considering the influence of electricity price on the will of the user, to establish load model. Finally, Monte Carlo simulation and Voronoi diagram principle are used to realize the optimal grid generation. The calculation results show that EV access to the power grid can cut peak load and reduce peak and valley difference. Within a certain range, with the increase of discharge price, the reduction of power network operating cost increases, the revenue from electricity sales increases and the growth slows down, and there is an approximate linear relationship between charging station benefits and valley charging price.

关键词

电动汽车(EV) / 电价 / 网格划分 / 蒙特卡洛模拟 / Voronoi图

Key words

electric vehicle(EV) / electricity prices / gridding / Monte Carlo simulation / Voronoi diagram

引用本文

导出引用
覃文泽, 李强, 姚方, . 考虑不同电价的电动汽车充电服务最优网格划分[J]. 分布式能源. 2020, 5(4): 59-68 https://doi.org/10.16513/j.2096-2185.DE.2007002
Wenze TAN, Qiang LI, Fang YAO, et al. Optimal Grid Generation of EV Charging Service Considering Different Electricity Prices[J]. Distributed Energy Resources. 2020, 5(4): 59-68 https://doi.org/10.16513/j.2096-2185.DE.2007002
中图分类号: TM714   

参考文献

[1]
吴鹏飞,卢强,李娜,等. 中国未来电动汽车充电服务市场规模预测分析[J]. 新能源汽车2019(16): 77-80.
WU Pengfei, LU Qiang, LI Na, et al. Forecast and analysis of China's future EV charging service market size[J]. New Energy Automobile, 2019(16): 77-80.
[2]
孙建龙,李妍,胡国伟,等. 电动汽车接入对配电变压器使用寿命的影响[J]. 高电压技术2015, 41(11): 3830-3835.
SUN Jianlong, LI Yan, HU Guowei, et al. Impact of plug-in electric vehicles on the operating life of distribution transformer[J]. High Voltage Engineering, 2015, 41(11): 3830-3835.
[3]
李雪,陈豪杰,杜大军. 多时段及变量相关情形下电动汽车充/放电对有源配电网电压水平影响研究[J]. 中国电机工程学报2018, 38(2): 526-536.
LI Xue, CHEN Haojie, DU Dajun. Study on the impact of charging/discharging strategy of electric vehicles on voltage level of active distribution system considering multi-period and variable correlations[J]. Proceedings of the CSEE, 2018, 38(2): 526-536.
[4]
卢芳. 基于排队论的电动汽车充电站选址定容研究[D]. 北京:北京交通大学,2015.
LU Fang. The location-sizing problem of electric vehicle charging station deployment based on queuing theory[D]. Beijing: Beijing Jiaotong University, 2015.
[5]
陈文锋. 基于排队论的城区内电动汽车充电站选址定容问题研究[J]. 物流工程与管理2016, 38(7): 189-191.
CHEN Wenfeng. The location-sizing problem of electric vehicle charging station deployment on the metropolis based on queuing theory[J]. Logistics Engineering and Management, 2016, 38(7): 189-191.
[6]
邵赛,关伟,毕军. 考虑排队时间和里程约束的竞争充电站选址问题[J]. 交通运输系统工程与信息2016, 16(6): 169-175.
SHAO Sai, GUAN Wei, BI Jun. Charging station loaction problem with queue and range in competitive multi-site service system[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 169-175.
[7]
陈光,毛召磊,李济沅,等. 计及碳排放的电动汽车充电站的多目标规划[J]. 电力系统自动化2014, 38(17): 49-53.
CHEN Guang, MAO Zhaolei, LI Jiyuan, et al. Multi-objective optimal planning of electric vehicle charging stations considering carbon emission[J]. Automation of Electric Power Systems, 2014, 38(17): 49-53.
[8]
所丽,唐巍,白牧可,等. 考虑削峰填谷的配电网集中型充电站选址定容规划[J]. 中国电机工程学报2014, 34(7): 1052-1060.
SUO Li, TANG Wei, BAI Muke, et al. Loacting and sizing of centralized charging stations in distribution network considering load shifting[J]. Proceedings of the CSEE, 2014, 34(7): 1052-1060.
[9]
刘柏良,黄学良,李军,等. 含分布式电源及电动汽车充电站的配电网多目标规划研究[J]. 电网技术2015, 39(2): 450-456.
LIU Bailing, HUANG Xueliang, LI Jun, et al. Multi-objective planning of distribution network containing distributed generation and electric vehicle charging stations[J]. Power System Technology, 2015, 39(2): 450-456.
[10]
贾龙,胡泽春,宋永华,等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报2017, 37(1): 73-83.
JIA Long, HU Zechun, SONG Yonghua, et al. Joint planning of distribution networks with distributed energy storage systems and electric vehicle charging stations[J]. Proceedings of the CSEE, 2017, 37(1): 73-83.
[11]
任玉珑,史乐峰,张谦,等. 电动汽车充电站最优分布和规模研究[J]. 电力系统自动化2011, 35(14): 53-57.
REN Yulong, SHI Lefeng, ZHANG Qian, et al. Optimal distribution and scale of charging stations for electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 53-57.
[12]
焦登杰,苏小林,阎晓霞,等. 一种基于Voronoi图和鲶鱼粒子群优化算法的充电站选址定容方案[J]. 控制理论与应用2018, 37(3): 5-10.
JIAO Dengjie, SU Xiaolin, YAN Xiaoxia, et al. A scheme of charging station loaction based on voronoi diagram and catfish particle swarm optimization algorithm[J]. Control Theory and Applications, 2018, 37(3): 5-10.
[13]
HE J, YANG H, TANG T Q, et al. An optimal charging station location model with the consideration of electric vehicle's driving range[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 641-654 (JAN).
[14]
夏德建. 电动汽车充电站项目的生命周期成本分析[J]. 重庆文理学院学报(社会科学版), 2013, 32(6): 94-99.
XIA Dejian. Analysis on life cycle cost of electric vehicle charging station project[J]. Journal of Chongqing University of Arts and Sciencces(Social Sciences Edition), 2013, 32(6): 94-99.
[15]
陈诚. 电动汽车和配电网的协调调度与规划[D]. 长沙:湖南大学,2016.
CHEN Cheng. Coordinated scheduling and planning of electric vehicles and distribution network[D]. Changsha: Hunan University, 2016.
[16]
陈丽丹,聂涌泉,钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报2015, 30(4): 216-225.
CHEN Lidan, NIE Yongquan, ZHONG Qing. A model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 216-225.
[17]
于海东,张焰,潘爱强. 电动私家车充电负荷中长期推演模型[J]. 电力系统自动化2019, 43(21): 80-87.
YU Haidong, ZHANG Yan, PAN Aiqiang. Medium-and long-term evolution model of charging load for private electric vehicle[J]. Automation of Electric Power Systems, 2019, 43(21): 80-87.
[18]
陈渊睿,徐铭康,曾君,等. 基于平行CPSS的电动汽车参与储能汇聚复用建模与分析[J]. 控制与决策2019, 34(11): 2428-2437.
CHEN Yuanrui, XU Mingkang, ZENG Jun, et al. Modelling and analysis of electric vehicles participating in the convergence and multiplexing of energy storage system based on parallel CPSS[J]. Control and Decision, 2019, 34(11): 2428-2437.
[19]
李亚芬,黄梅,张维戈. 电动出租车日充电负荷估算方法[J]. 电力系统自动化2014, 38(10): 55-60.
LI Yafen, HUANG Mei, ZHANG Weige. An estimation method for daily charging load of electric taxis[J]. Automation of Electric Power Systems, 2014, 38(10): 55-60.
[20]
U.S. Department of Transportation. Federal highway admini-stration, 2017 national household travel survey[EB/OL]. URL:
[21]
潘林. 数据驱动的城市尺度人类移动性研究[D]. 天津:天津大学,2015.
PAN Lin. Research on data-driven intra-city human mobility[D]. Tianjin: Tianjin University, 2015.
[22]
刘笠. 基于分区的含电动汽车充换电站配电网规划研究[D]. 南京:南京师范大学,2015.
LIU Li. Research on distribution network planning of electric vehicle charging and changing power station based on partition[D]. Nanjing: Nanjing Normal University, 2015.
[23]
高鹏彦,赵兴勇,姚方,等. 考虑电动汽车时空分布的充电负荷建模[J]. 电力科学与技术学报2019, 34(3): 234-242.
GAO Pengyan, ZHAO Xingyong, YAO Fang, et al. Modeling of charging loads considering the temporal and spatial distributions of electric vehicles[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 234-242.

基金

国家自然科学基金(U1509218)
山西省电力公司科技项目(SGTYHT/18-JS-202)

PDF(2949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/