PDF(2949 KB)
PDF(2949 KB)
PDF(2949 KB)
考虑不同电价的电动汽车充电服务最优网格划分
Optimal Grid Generation of EV Charging Service Considering Different Electricity Prices
针对电动汽车(electric vehicle,EV)充电设施的规划问题,提出基于不同电价的最优网格划分方法。首先,从建设成本、运营成本、电网效益、用户效益、充电站效益分析充电设施的经济性。其次,根据功能和行为规律将城市分为五类区域,分区域分析私家车、出租车、公交车的出行规律和充放电规律,对私家车首次出行时刻、出行链、停留时间、出租车载客间隔时间进行概率建模,并考虑电价对用户充放电意愿的影响,建立负荷模型。最后,提出采用蒙特卡洛模拟并结合Voronoi图原理实现最优网格划分的步骤。计算结果表明,通过调整电价,可以引导EV用户放电和有序充电,在用户自身获益的同时,为电网降低峰谷差和运行成本,为充电站提供更高的经济效益。
Aiming at the planning of electric vehicle (EV) charging facilities, an optimal grid generation method based on different electricity prices is proposed. Firstly, the economics of charging facilities are analyzed from the perspectives of construction cost, operation cost, power grid benefit, user benefit and charging station benefit. Second, according to the function and behavior rule, cities can be divided into five groups, area, analysis the travel law of private cars, taxis, buses and the rule of the charge and discharge, the private cars for the first time, travel time, travel chain, residence time, the taxi passenger time interval probability modeling, and considering the influence of electricity price on the will of the user, to establish load model. Finally, Monte Carlo simulation and Voronoi diagram principle are used to realize the optimal grid generation. The calculation results show that EV access to the power grid can cut peak load and reduce peak and valley difference. Within a certain range, with the increase of discharge price, the reduction of power network operating cost increases, the revenue from electricity sales increases and the growth slows down, and there is an approximate linear relationship between charging station benefits and valley charging price.
电动汽车(EV) / 电价 / 网格划分 / 蒙特卡洛模拟 / Voronoi图
electric vehicle(EV) / electricity prices / gridding / Monte Carlo simulation / Voronoi diagram
| [1] |
吴鹏飞,卢强,李娜,等. 中国未来电动汽车充电服务市场规模预测分析[J]. 新能源汽车,2019(16): 77-80.
|
| [2] |
孙建龙,李妍,胡国伟,等. 电动汽车接入对配电变压器使用寿命的影响[J]. 高电压技术,2015, 41(11): 3830-3835.
|
| [3] |
李雪,陈豪杰,杜大军. 多时段及变量相关情形下电动汽车充/放电对有源配电网电压水平影响研究[J]. 中国电机工程学报,2018, 38(2): 526-536.
|
| [4] |
卢芳. 基于排队论的电动汽车充电站选址定容研究[D]. 北京:北京交通大学,2015.
|
| [5] |
陈文锋. 基于排队论的城区内电动汽车充电站选址定容问题研究[J]. 物流工程与管理,2016, 38(7): 189-191.
|
| [6] |
邵赛,关伟,毕军. 考虑排队时间和里程约束的竞争充电站选址问题[J]. 交通运输系统工程与信息,2016, 16(6): 169-175.
|
| [7] |
陈光,毛召磊,李济沅,等. 计及碳排放的电动汽车充电站的多目标规划[J]. 电力系统自动化,2014, 38(17): 49-53.
|
| [8] |
所丽,唐巍,白牧可,等. 考虑削峰填谷的配电网集中型充电站选址定容规划[J]. 中国电机工程学报,2014, 34(7): 1052-1060.
|
| [9] |
刘柏良,黄学良,李军,等. 含分布式电源及电动汽车充电站的配电网多目标规划研究[J]. 电网技术,2015, 39(2): 450-456.
|
| [10] |
贾龙,胡泽春,宋永华,等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报,2017, 37(1): 73-83.
|
| [11] |
任玉珑,史乐峰,张谦,等. 电动汽车充电站最优分布和规模研究[J]. 电力系统自动化,2011, 35(14): 53-57.
|
| [12] |
焦登杰,苏小林,阎晓霞,等. 一种基于Voronoi图和鲶鱼粒子群优化算法的充电站选址定容方案[J]. 控制理论与应用,2018, 37(3): 5-10.
|
| [13] |
|
| [14] |
夏德建. 电动汽车充电站项目的生命周期成本分析[J]. 重庆文理学院学报(社会科学版), 2013, 32(6): 94-99.
|
| [15] |
陈诚. 电动汽车和配电网的协调调度与规划[D]. 长沙:湖南大学,2016.
|
| [16] |
陈丽丹,聂涌泉,钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报,2015, 30(4): 216-225.
|
| [17] |
于海东,张焰,潘爱强. 电动私家车充电负荷中长期推演模型[J]. 电力系统自动化,2019, 43(21): 80-87.
|
| [18] |
陈渊睿,徐铭康,曾君,等. 基于平行CPSS的电动汽车参与储能汇聚复用建模与分析[J]. 控制与决策,2019, 34(11): 2428-2437.
|
| [19] |
李亚芬,黄梅,张维戈. 电动出租车日充电负荷估算方法[J]. 电力系统自动化,2014, 38(10): 55-60.
|
| [20] |
U.S. Department of Transportation. Federal highway admini-stration, 2017 national household travel survey[EB/OL]. URL:
|
| [21] |
潘林. 数据驱动的城市尺度人类移动性研究[D]. 天津:天津大学,2015.
|
| [22] |
刘笠. 基于分区的含电动汽车充换电站配电网规划研究[D]. 南京:南京师范大学,2015.
|
| [23] |
高鹏彦,赵兴勇,姚方,等. 考虑电动汽车时空分布的充电负荷建模[J]. 电力科学与技术学报,2019, 34(3): 234-242.
|
/
| 〈 |
|
〉 |