PDF(4113 KB)
PDF(4113 KB)
PDF(4113 KB)
一种基于二阶广义积分器和延时信号消除算子的改进型锁相环研究
Research on an Improved PLL Based on Second Order Generalized Integrator and Delay Signal Cancellation Operator
传统基于二阶广义积分器的锁相环(phase locked loop,PLL)尽管能应对三相不平衡或谐波情况下锁相问题,但是二阶广义积分器的正交发生器难以完全滤除所含谐波。针对三相不平衡和电网谐波污染时锁相困难的问题,提出了一种快速信号同步方案。首先,双二阶广义积分器(double second-order generalized integrator,DSOGI)可以实现正交信号的产生,滤除高次谐波,从而得到可能含有低次谐波的正序分量信号,保证三相不平衡时的精确锁相。其次,在dq同步旋转坐标系中,采用延迟信号消除(delay signal cancellation,DSC)方法滤除低偶数谐波,从而避免了采用低通滤波器(low-pass filter,LPF)时动态响应差的问题。最后,通过PI调节控制q轴分量为0,实现同步信号的快速提取。在Matlab/Simulink环境下的仿真结果验证了所提出的快速相位同步方案在电网不平衡和存在谐波污染的情况下能够实现快速锁相。
Although the traditional phase locked loop (PLL) based on double second-order generalized integrator (DSOGI) can finish the phase-lock in the case of three-phase imbalance or harmonics, the quadrature generator of the second-order generalized integrator is difficult to completely filter out all the harmonics. Aiming at the difficulty of phase lock when three-phase imbalance and grid harmonic pollution, this paper proposed a fast phase synchronization scheme. Firstly, the DSOGI can achieve quadrature signal generation, and filter out high-order harmonics, so that it can obtain the positive-sequence component which may contain low-order harmonics, and ensure accurate phase lock when the three-phase unbalance. In the dq synchronous rotation coordinate system, the delay signal cancellation (DSC) scheme was used to filter out the lower even harmonics, thereby avoiding the problem of poor dynamic response when applying low-pass filter(LPF). Finally, the q-axis component was controlled to 0 by PI regulation to realize the fast extraction of synchronous signal. The simulation results built in Matlab/Simulink verified that the proposed fast synchronous phase scheme can quickly phase lock when the power grid is unbalanced and exists harmonic pollution.
双二阶广义积分器(DSOGI) / 锁相环(PLL) / 快速相位同步 / PI控制
double second order generalized integrator (DSOGI) / phase locked loop (PLL) / fast phase synchronization / PI control
| [1] |
张国荣,颜丽花,陈夏冉. 电网不平衡下改进新型锁相环的研究[J]. 电力电子技术,2018, 52(3): 64-66.
|
| [2] |
张学广,付志超,陈文佳,等. 弱电网下考虑锁相环影响的并网逆变器改进控制方法[J]. 电力系统自动化,2018, 42(7): 139-145.
|
| [3] |
董福贵,张也,尚美美. 分布式能源系统多指标综合评价研究[J]. 中国电机工程学报,2016, 36(12): 3214-3223.
|
| [4] |
郭慧,汪飞,张笠君,等. 基于能量路由器的智能型分布式能源网络技术[J]. 中国电机工程学报,2016, 36(12): 3314-3324.
|
| [5] |
涂春鸣,黄红,兰征,等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报,2019, 34(12): 2627-2636.
|
| [6] |
颜宁,厉伟,邢作霞,等. 复合储能在主动配电网中的容量配置[J]. 电工技术学报,2017, 32(19): 180-186.
|
| [7] |
王鹿军,张冲,吕征宇. 电网谐波背景下单相并网逆变器的锁相方法[J]. 电力系统自动化,2013, 37(14): 107-112.
|
| [8] |
曾正,邵伟华,刘清阳,等. 并网逆变器数字锁相环的数学物理本质分析[J]. 电工技术学报,2018, 33(4): 808-816.
|
| [9] |
朴政国,户永杰,郭裕祺. 一种基于并联谐振的高频隔离型并网逆变器[J]. 电工技术学报,2018, 33(2): 322-330.
|
| [10] |
欧阳逸风,邹宇. 弱电网条件下并网逆变器的锁相环静态稳定分析[J]. 电力系统保护与控制,2018, 46(18): 74-79.
|
| [11] |
张兴,张崇巍. PWM整流器及其控制[M]. 北京:机械工业出版社,2012.
|
| [12] |
文武松,张颖超,王璐,等. 解耦双同步坐标系下单相锁相环技术[J]. 电力系统自动化,2016, 40(20): 114-120.
|
| [13] |
周元峰,段善旭,刘宝其,等. 改进的解耦双同步坐标系锁相环的设计与实现[J]. 电力电子技术,2012, 46(8): 68-70.
|
| [14] |
吴明剑,李建春. 基于FPGA的二阶广义积分器锁相环研究与实现[J]. 电力电子技术,2016, 50(6): 37-39.
|
| [15] |
徐晟灏,姜建国,刘贺,等. 二阶广义积分锁相环在三电平SVG中的应用[J]. 电测与仪表,2018, 55(4): 34-39.
|
| [16] |
回楠木,王大志,李云路. 基于复变陷波器的并网锁相环直流偏移消除方法[J]. 电工技术学报,2018, 33(24): 5897-5906.
|
| [17] |
乔和,关紫微,苏佰超,等. 非理想电网下级联信号延迟对消锁相方法研究[J]. 电力电子技术,2016, 50(5): 105-108.
|
| [18] |
王兆安,刘进军. 谐波抑制和无功功率补偿[M]. 北京:机械工业出版社,2016.
|
/
| 〈 |
|
〉 |