基于非序贯蒙特卡洛法的特高压直流外送配套电源可靠性评估

胡家华,李东辉

分布式能源 ›› 2020, Vol. 5 ›› Issue (5) : 16-21.

PDF(1039 KB)
PDF(1039 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (5) : 16-21. DOI: 10.16513/j.2096-2185.DE.2008001
学术研究

基于非序贯蒙特卡洛法的特高压直流外送配套电源可靠性评估

作者信息 +

Reliability Evaluation of UHV DC Power Supply Using Nonsequential Monte Carlo Method

Author information +
文章历史 +

摘要

为了评估直流外送通道配套电源可靠性,结合特高压直流外送通道的运行情况,建立了含风力、光伏的新能源发电系统失效概率计算模型,采用非序贯蒙特卡洛模拟法,对直流外送通道配套电源进行可靠性评估。定义配套电源冗余容量比和出力偏移度2个指标进一步衡量直流外送通道配套电源的可靠性。通过对某地特高压直流外送系统配套电源的可靠性分析,计算出了几种不同情景下配套电源可靠性的变化结果。算例结果表明,本方法对于直流外送系统配套电源可靠性评估具有一定的适用性。

Abstract

In order to evaluate the power reliability of the DC transmission channel, combined with the operation of the UHV DC transmission channel, the failure probability calculation model of the new energy power generation system including wind power and photovoltaic power generation was established, and non-sequential Monte Carlo simulation was adopted. A method for evaluating the power reliability of a DC transmission channel. Defining two indicators, namely the redundant capacity ratio and output deviation of the auxiliary power supply, can further measure the reliability of the auxiliary power supply of the DC transmission channel. Through the analysis of the reliability of the supporting power supply of the UHV DC transmission system in a certain area, the variation results of the supporting power supply reliability under several different conditions are calculated. The result of the calculation example shows that the method has certain applicability for the reliability evaluation of the supporting power supply of the DC transmission system.

关键词

直流外送系统 / 配套电源 / 新能源系统 / 非序贯蒙特卡洛法 / 可靠性评估

Key words

DC transmission system / auxiliary power supply / renewable energy system / nonsequential Monte Carlo method / reliability evaluation

引用本文

导出引用
胡家华, 李东辉. 基于非序贯蒙特卡洛法的特高压直流外送配套电源可靠性评估[J]. 分布式能源. 2020, 5(5): 16-21 https://doi.org/10.16513/j.2096-2185.DE.2008001
Jiahua HU, Donghui LI. Reliability Evaluation of UHV DC Power Supply Using Nonsequential Monte Carlo Method[J]. Distributed Energy Resources. 2020, 5(5): 16-21 https://doi.org/10.16513/j.2096-2185.DE.2008001
中图分类号: TK29   

参考文献

[1]
舒印彪,张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报2007, 27(31): 1-6.
SHU Yinbiao, ZHANG Wenliang. Research of key technologies for UHV transmission[J]. Proceeding of the CSEE, 2007, 27(31): 1-6.
[2]
别朝红,王锡凡. 蒙特卡洛法在评估电力系统可靠性中的应用[J]. 电力系统自动化1997, 21(6): 68-75.
BIE Zhaohong, WANG Xifan. The application of Monte Carlo method to reliability evaluation of power system[J]. Automation of Electric Power Systems, 1997, 21(6): 68-75.
[3]
张巍峰,车延博,刘阳升. 电力系统可靠性评估中的改进拉丁超立方抽样方法[J]. 电力系统自动化2015, 39(4): 52-57.
ZHANG Weifeng, CHE Yanbo, LIU Yangsheng. Improved Latin hypercube sampling method for reliability evaluation of power systems[J]. Automation of Electric Power Systems, 2015, 39(4): 52-57.
[4]
汪海瑛,白晓民,马纲. 并网光伏电站的发电可靠性评估[J]. 电网技术2012, 36(10): 1-5.
WANG Haiying, BAI Xiaomin, MA Gang. Reliability assessment considering the coordination of wind power, solar energy and energy storage[J]. Power System Technology, 2012, 36(10): 1-5.
[5]
方鑫,郭强,张东霞,等. 并网光伏电站置信容量评估[J]. 电网技术2012, 36(9): 31-35.
FANG Xin, GUO Qiang, ZHANG Dongxia, et al. Capacity credit evaluation of grid-connected photovoltaic generation[J]. Power System Technology, 2012, 36(9): 31-35.
[6]
张轶,鲁国起,张焰,等. 光伏电站并网对电网可靠性的影响[J]. 华东电力2010, 38(5): 700-706.
ZHANG Yi, LU Guoqi, ZHANG Yan, et al. Influence of grid connection of photovoltaic power station on power grid reliability[J]. East China Electric Power, 2010, 38(5): 700-706.
[7]
王秀丽,武泽辰,曲翀. 光伏发电系统可靠性分析及其置信容量计算[J]. 中国电机工程学报2014, 34(1): 15-21.
WANG Xiuli, WU Zechen, QU Chong. Reliability and capacity value evaluation of photovoltaic generation systems[J]. Proceedings of the CSEE, 2014, 34(1): 15-21.
[8]
吴红斌,白雪,王蕾. 基于序贯蒙特卡洛模拟的风光储发电系统可靠性评估[J]. 太阳能学报2017, 38(6): 1501-1509.
WU Hongbin, BAI Xue, WANG Lei. Reliability evaluation of wind-solar-battery generation system based on sequential monte carlo simulation[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1501-1509.
[9]
王敏,宗炫君,袁越,等. 含光伏电站的发电系统可靠性分析[J]. 中国电机工程学报2013, 33(34): 42-49.
WANG Min, ZONG Xuanjun, YUAN Yue, et al. Reliability analysis of generation systems with photovoltaic stations[J]. Proceedings of the CSEE, 2013, 33(34): 42-49.
[10]
方鑫,郭强,张东霞,等. 考虑天气不确定性的光伏电站置信容量评估[J]. 电力系统自动化2012, 36(10): 27-32.
FANG Xin, GUO Qiang, ZHANG Dongxia, et al. Capacity credit evaluation of grid-connected photovoltaic generation considering weather uncertainty[J]. Automation of Electric Power Systems, 2012, 36(10): 27-32.
[11]
蒋程,刘文霞,张建华,等. 含风电接入的发输电系统风险评估[J]. 电工技术学报2014, 29(2): 260-270.
JIANG Cheng, LIU Wenxia, ZHANG Jianhua, et al. Risk assessment of generation and transmission systems considering wind power penetration[J]. 2014, 29(2): 260-270.
[12]
葛少云,王浩鸣,王源山,等. 含分布式风光蓄的配电系统可靠性评估[J]. 电力系统自动化2012, 36(5): 16-23.
GE Shaoyun, WANG Haoming, WANG Yuanshan, et a1. Reliability evaluation of distribution system including distributed wind energy, solar energy and battery storage[J]. Automation of Electric Power Systems, 2012, 36(5): 16-23.
[13]
张巍峰,车延博,林济铿,等. 基于改进抽样法的电力系统可靠性评估[J]. 中国电力2015, 48(5): 56-63.
ZHANG Weifeng, CHE Yanbo, LIN Jikeng, et al. Power system reliability evaluation based on improved sampling method[J]. Electric Power, 2015, 48(5): 56-63.
[14]
沈金荣,惠杰,董炜. 基于地理位置相关性的光伏故障监控方法研究[J]. 可再生能源2016, 34(12): 1754-1761.
SHEN Jinrong, HUI jie, DONG wei. Research on the method of photovoltaic fault monitoring based on the geographical position correlation[J]. Renewable Energy Resources, 2016, 34(12): 1754-1761.
[15]
HETZER J, YU D C, BHATTARAI K. An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 603-611.

基金

中央高校基本科研业务项目(DUT20RC(5)021)

PDF(1039 KB)

Accesses

Citation

Detail

段落导航
相关文章

/