PDF(2026 KB)
PDF(2026 KB)
PDF(2026 KB)
含风力发电的互联电力系统自动发电控制优化方法研究
Research on Automatic Generation Control Optimization Method of Interconnected Power System With Wind Power Generation
随着大规模风电并网运行,单独依靠传统发电机组难以有效平抑风功率波动,有必要采用自动发电控制(automatic generation control,AGC)把风电场纳入电力系统调频控制,从而保证电力系统稳定运行。首先,通过分析双馈异步风力发电机(doubly fed induction generator,DFIG)的机械特性,兼顾风电并网运行的经济性,提出一种高风速工况下风电机组限功率运行参与电网二次调频以及平抑中低风速工况下的风功率波动的控制策略;其次,通过改进传统的桨距角控制使得高风速风电机组能够灵活响应电网的调度指令;最后,在4机2区域系统中搭建了含有风电场的自动发电控制模型,仿真结果验证了所提控制方案的有效性,说明风电机组可以快速灵活地响应系统的调度指令,减少联络线交换功率窜动以及频率变化,提高风电消纳能力和电力系统稳定性。
With the large-scale wind power grid-connected operation, it is difficult to effectively suppress the wind power fluctuation by relying on the traditional generator set alone. It is necessary to adopt the automatic generation control (AGC) to incorporate the wind farm into the power system frequency modulation control to ensure the stable operation of the power system. Firstly, by analyzing the mechanical characteristics of the doubly fed induction generator (DFIG) and taking into account the economical efficiency of wind power grid-connected operation, the wind power fluctuation control of wind turbines under the high wind speed condition and the secondary power frequency regulation of the wind turbine under the low and medium wind speed conditions are proposed. Secondly, the strategy to improve the traditional pitch angle control enables the high wind speed wind turbine to flexibly respond to the grid's dispatch commands. Finally, the simulation of the automatic generation control control model with wind farm built in the 4-machine 2-area system verifies the effectiveness of the proposed control scheme. The wind turbine can respond to the system's dispatching instructions quickly and flexibly, reducing the power exchange frequency and frequency of the tie line exchange. It can also improve the wind turbine absorption capacity and power system stability.
双馈异步风力发电机(DFIG) / 风功率波动 / 限功率运行 / 自动发电控制(AGC) / 桨距角控制
doubly fed induction generator (DFIG) / wind power fluctuation / limited power operation / automatic generation control (AGC) / pitch angle control
| [1] |
付媛,王毅,张祥宇,等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报,2014, 34(27): 4706-4716.
|
| [2] |
|
| [3] |
|
| [4] |
国家能源局. 国家能源局新闻发布会介绍2017年度相关能源情况等[EB/OL]. (2018-01-24)[2020-12-10].
|
| [5] |
刘彬彬,杨健维,廖凯,等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化,2016, 40(16): 17-22.
|
| [6] |
|
| [7] |
|
| [8] |
潘文霞,全锐,王飞. 基于双馈风电机组的变下垂系数控制策略[J]. 电力系统自动化,2015, 39(11): 126-131.
|
| [9] |
侍乔明,王刚,马伟明,等. 直驱永磁风电机组虚拟惯量控制的实验方法研究[J]. 中国电机工程学报,2015, 35(8): 2033-2042.
|
| [10] |
|
| [11] |
邹贤求,吴政球,陈波,等. 变速恒频双馈风电机组频率控制策略的改进[J]. 电力系统及其自动化学报. 2011, 23(3): 63-68.
|
| [12] |
李生虎,朱国伟. 基于有功备用的风电机组一次调频能力及调频效果分析[J]. 电工电能新技术,2015, 34(10): 28-33.
|
| [13] |
丁磊,尹善耀,王同晓,等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术,2015, 39(9): 2385-2391.
|
| [14] |
张昭遂,孙元章,李国杰,等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化,2011, 35(17): 20-25.
|
| [15] |
范冠男,刘吉臻,孟洪民,等. 电网限负荷条件下风电场一次调频策略[J]. 电网技术,2016, 40(7): 2030-2037.
|
| [16] |
|
| [17] |
刘吉臻,姚琦,柳玉,等. 风火联合调度的风电场一次调频控制策略研究[J]. 中国电机工程学报,2017, 37(12): 3462-3469.
|
| [18] |
隗霖捷,王德林,李芸,等. 基于可变系数的双馈风电机组与同步发电机协调调频策略[J]. 电力系统自动化,2017, 41(2): 94-100.
|
/
| 〈 |
|
〉 |