计及负荷电压静态特性的光储微电网频率控制策略

黄阮明,王海群,张铭泽,李灏恩,屈靖雅,赵晶晶

分布式能源 ›› 2020, Vol. 5 ›› Issue (6) : 1-6.

PDF(1526 KB)
PDF(1526 KB)
分布式能源 ›› 2020, Vol. 5 ›› Issue (6) : 1-6. DOI: 10.16513/j.2096-2185.DE.2010004
学术研究

计及负荷电压静态特性的光储微电网频率控制策略

作者信息 +

Frequency Control Strategy of Photovoltaic Storage Microgrid Considering Static Load Voltage Characteristics

Author information +
文章历史 +

摘要

光伏渗透率较高的微电网,由于系统惯性降低而造成微电网调频困难。为提高微电网调频能力,在考虑负荷电压静态特性的基础上,提出了电压频率控制(voltage based frequency control, VFC)频率控制策略,该策略通过调节负荷处母线电压改变负荷功率需求以协助微电网频率调节。首先,在DIgSILENT仿真软件中对光储微电网频率控制进行了建模;然后,将频率波动信号进行频域分解,并将高低中调频信号分配给微电网中储能、VFC控制器、柴油机,让其承担不同的调频任务;最后,分析了不同电源的调频能力。仿真结果表明,VFC控制策略能有效提高微电网频率稳定性,延长储能在微电网中的放电时间。

Abstract

In microgrid with high PV penetration, it is difficult to adjust frequency of microgrid due to low system inertia. In order to improve the frequency modulation capability of microgrid, a voltage based frequency control (VFC) frequency control strategy is proposed based on the static characteristics of load voltage. The strategy changes the load power demand by adjusting the bus voltage at the load to assist the frequency regulation of microgrid. Firstly, the frequency control model of optical storage microgrid is established in DIgSILENT simulation software. Then, the frequency fluctuation signal is decomposed in frequency domain, and the high and low frequency modulation signals are distributed to energy storage, VFC controller and diesel engine in microgrid to undertake different frequency modulation tasks. Finally, the frequency modulation ability of different power sources is analyzed. The simulation results show that VFC control strategy can effectively improve the frequency stability of microgrid and prolong the discharge time of energy storage in microgrid.

关键词

储能 / 负荷 / 电压调节 / 频率控制 / 微电网

Key words

energy storage / load / voltage regulation / frequency control / microgrid

引用本文

导出引用
黄阮明, 王海群, 张铭泽, . 计及负荷电压静态特性的光储微电网频率控制策略[J]. 分布式能源. 2020, 5(6): 1-6 https://doi.org/10.16513/j.2096-2185.DE.2010004
Ruanming HUANG, Haiqun WANG, Mingze ZHANG, et al. Frequency Control Strategy of Photovoltaic Storage Microgrid Considering Static Load Voltage Characteristics[J]. Distributed Energy Resources. 2020, 5(6): 1-6 https://doi.org/10.16513/j.2096-2185.DE.2010004
中图分类号: TK02   

参考文献

[1]
周孝信,陈树勇,鲁宗相,等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报2018, 38(7): 1893-1904.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904.
[2]
李姚旺,苗世洪,刘君瑶,等. 考虑需求响应不确定性的光伏微电网储能系统优化配置[J]. 电力系统保护与控制2018, 46(20): 69-77.
LI Yaowang, MIAO Shihong, LIU Junyao, et al. Optimal allocation of energy storage system in PV micro grid considering uncertainty of demand response[J]. Power System Protection and Control, 2018, 46 (20): 69-77.
[3]
王小蕾,顾佳,周佳威. 风储联合系统的储能容量优化配置[J]. 浙江电力2018, 37(9): 14-17.
WANG Xiaolei, GU Jia, ZHOU Jiawei. Optimal capacity configuration of cogeneration system of wind power and energy storage[J]. Zhejiang Electric Power, 2018, 37(9): 14-17.
[4]
刘畅,卓建坤,赵东明,等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报2020, 40(1): 1-18, 369.
LIU Chang, ZHUO Jiankun, ZHAO Dongming, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrid[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369.
[5]
杨新法,苏剑,吕志鹏,等. 微电网技术综述[J]. 中国电机工程学报2014, 34(1): 57-70.
YANG Xinfa, SU Jian, LV Zhipeng, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70.
[6]
赵晶晶,徐传琳,吕雪,等. 微电网一次调频备用容量与储能优化配置方法[J]. 中国电机工程学报2017, 37(15): 4324-4332, 4572.
ZHAO Jingjing, XU Chuanlin, Xue, et al. Optimization of micro-grid primary frequency regulation reserve capacity and energy storage system[J]. Proceedings of the CSEE, 2017, 37(15): 4324-4332, 4572.
[7]
马伟,王玮,吴学智,等. 光储协调互补平抑功率波动策略及经济性分析[J]. 电网技术2018, 42(3): 730-737.
MA Wei, WANG Wei, WU Xuezhi, et al. Coordinated control strategy of photovoltaics and energy storage for smoothing power fluctuations of photovoltaics and economic analysis[J]. Power System Technology, 2018, 42(3): 730-737.
[8]
UMER A, MUHAMMAD K. A coordinated frequency regulation framework based on hybrid battery-ultracapacitor energy storage technologies[J]. IEEE Access, 2018, 6: 7310-7320.
[9]
马守达,杨锦成,崔承刚,等. 能源互联网储能技术应用研究[J]. 发电技术2018, 39(5): 412-418.
MA Shouda, YANG Jincheng, CUI Chenggang, et al. Research on application of energy storage technology in energy internet[J]. Power Generation Technology, 2018, 39(5): 412-418.
[10]
邓霞,孙威,肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术2018, 44(4): 1157-1165.
ZHENG Xia, SUN Wei, XIAO Haiwei. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165.
[11]
陈浩,贾燕冰,郑晋,等. 规模化储能调频辅助服务市场机制及调度策略研究[J]. 电网技术2019, 43(10): 3606-3617.
CHEN Hao, JIA Yanbing, ZHENG Jin, et al. Research on market mechanism and scheduling strategy of frequency regulation auxiliary service of large-scale energy storage[J]. Power System Technology, 2019, 43(10): 3606-3617.
[12]
马恒瑞,王波,高文忠,等. 区域综合能源系统中储能设备参与辅助服务的运行优化[J]. 电力系统自动化2019, 43(8): 34-46.
MA Hengrui, WANG Bo, GAO Wenzhong, et al. Operation optimization of energy storage equipment participating in auxiliary service in regional integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(8): 34-46.
[13]
刘英军,刘畅,王伟,等. 储能发展现状与趋势分析[J]. 中外能源2017, 22 (4): 80-88.
LIU Yingjun, LIU Chang, WANG Wei, et al. Analysis of development status and trend of energy storage technology[J]. Sino-Global Energy, 2017, 22 (4): 80-88.
[14]
李琼慧,王彩霞,张静,等. 适用于电网的先进大容量储能技术发展路线图[J]. 储能科学与技术2017, 6 (1): 141-146.
LI Qionghui, WANG Caixia, ZHANG Jing, et al. A roadmap for large scale energy storage for grid-level applications[J]. Energy Storage Science and Technology, 2017, 6 (1): 141-146.
[15]
刘科正,刘国荣,张真源,等. 一种新型风电混合储能系统模糊协调控制方法[J/OL]. 电力系统及其自动化学报:1-12[2020-10-09].
LIU Kezheng, LIU Guorong, ZHANG Zhenyuan, et al. A new fuzzy coordination controlling method for wind power hybrid energy storage system[J/OL]. Automation of Electric Power Systems: 1-12[2020-10-09].
[16]
李培强,丰云鹤,李欣然,等. 考虑超短期负荷预测的储能电池参与电网一次调频控制策略[J]. 电力系统自动化2019, 43(19): 87-93.
LI Peiqiang, FENG Yunhe, LI Xinran, et al. Control strategy for energy storage battery participating in primary frequency regulation of power grid considering ultra-short-term load forecasting[J]. Automation of Electric Power Systems, 2019, 43(19): 87-93.
[17]
杨健维,董鸿志,廖凯,等. 计及电动汽车辅助调频的负荷频率控制联合优化[J]. 电力自动化设备2019, 39(3): 200-206.
YANG Jianwei, DONG Hongzhi, LIAO Kai, et al. Joint optimization of load frequency control considering auxiliary frequency regulation of electric vehicles[J]. Electric Power Automation Equipment, 2019, 39(3): 200-206.
[18]
包宇庆,李扬,王春宁,等. 需求响应参与大规模风电接入下的电力系统频率调节研究[J]. 电力系统保护与控制2015, 43(4): 32-37.
BAO Yuqing, LI Yang, WANG Chunning, et al. On demand response participating in the frequency control of the grid under high wind penetration[J]. Power System Protection and Control, 2015, 43(4): 32-37.
[19]
张峰,杨志鹏,张利,等. 计及多类型需求响应的孤岛型微能源网经济运行[J]. 电网技术2020, 44(2): 547-557.
ZHANG Feng, YANG Zhipeng, ZHANG Li, et al. Optimal operation of islanded micro energy grid with multi-type demand responses[J]. Power System Technology, 2020, 44(2): 547-557.
[20]
刘杰锋,李冰,张帆,等. 电力系统频率特性影响因素研究及概述[J]. 电气应用2019, 38(3): 29-34.
LIU Jiefeng, LI Bing, ZHANG Fan, et al. Research and overview of the influencing factors of power system frequency characteristics[J]. Electrotechnical Application, 2019, 38(3): 29-34.

PDF(1526 KB)

Accesses

Citation

Detail

段落导航
相关文章

/