PDF(1545 KB)
PDF(1545 KB)
PDF(1545 KB)
樽海鞘群算法在电力系统最优潮流计算中的应用
Application of Salp Swarm Algorithm in Optimal Power Flow Calculation for Power System
领导者比例的选取对樽海鞘群算法(salp swarm algorithm,SSA)求解电力系统最优潮流问题的计算结果具有较大的影响。以网损、电压偏移、发电成本、电压稳定度为目标,研究了领导者取种群中最优个体或取种群中适应度较好的前10%~50%的个体对算法求解单目标及多目标最优潮流问题优化效果的影响。对IEEE 30节点系统和IEEE 118节点系统的最优潮流计算表明,樽海鞘群算法中的领导者取为种群中适应度较好的前20%~40%个体时,同算法原有的领导者取种群中最优个体的更新策略相比,可以获得更好的最优潮流求解结果。该文的研究成果可为樽海鞘群算法用于最优潮流相关问题提供借鉴参考。
Ratio of leaders in salp swarm algorithm(SSA) has significant influence on the optimal power flow calculation results of power system. Setting the network loss, voltage deviation, generation cost and voltage stability as the objective functions, the different optimization effects of SSA in solving single objective and multi-objective optimal power flow problems was studied when the leader of the algorithm is taken as the best individual of the total population or the ratio of leaders is taken as the top 10%~50% of the total population.The calculation results of IEEE 30-bus system and IEEE 118-bus system show that SSA can obtain better optimization results when the ratio of leaders is taken as the top 20%~40% of the total population. This research can provide some reference for the application of SSA in optimal power flow calculation.
樽海鞘群算法(SSA) / 最优潮流 / 领导者比例 / 优化效果
salp swarm algorithm(SSA) / optimal power flow / ratio of leaders / optimization effect
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
王彦军,王秋萍,王晓峰. 改进的樽海鞘群算法及在焊接梁问题中的应用[J]. 西安理工大学学报,2019, 35(4): 484-493.
|
| [13] |
余跃,王宏伦. 一种高超声速飞行器再入轨迹优化方法[J]. 宇航学报,2020(7): 926-936.
|
| [14] |
郭立民,谢强,陈涛,等. 运动单站单基线解模糊定位算法[J]. 中南大学学报(自然科学版), 2019, 50(2): 336-342.
|
| [15] |
杨博,钟林恩,朱德娜,等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用,2019, 36(3): 339-352.
|
| [16] |
王明超,董佳圆,李继影,等. 基于ISSA的STATCOM模型参数解耦辨识研究[J]. 东北电力大学学报,2020, 40(1): 81-89.
|
| [17] |
林国营,卢世祥,郭昆健,等. 基于主从博弈的电网公司需求响应补贴定价机制[J]. 电力系统自动化,2020, 44(10): 59-67.
|
| [18] |
|
| [19] |
|
| [20] |
杨蕾,吴琛,黄伟,等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设,2020, 41(7): 100-109.
|
| [21] |
张衍. 电压稳定在线监控的最小奇异值指标[C]//中国电机工程学会年会. 成都:中国电机工程学会,2013: 1-5.
|
| [22] |
李鸿鑫,李银红,陈金富,等. 自适应选择进化算法的多目标无功优化方法[J]. 中国电机工程学报,2013, 33(10): 71-78.
|
| [23] |
张凡,王雷,赵娟,等. 粒子群算法种群规模和迭代次数对系统优化效果的影响研究[J]. 青海电力,2020(2): 12-20.
|
/
| 〈 |
|
〉 |