基于云边协同的新能源监控与大数据平台构建

王丽杰, 张喜平, 冯强, 吴君仪

分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 44-50.

PDF(3716 KB)
PDF(3716 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 44-50. DOI: 10.16513/j.2096-2185.DE.2106002
应用技术

基于云边协同的新能源监控与大数据平台构建

作者信息 +

Construction of New Energy Monitoring and Big Data Platform Based on Cloud-Side Collaboration

Author information +
文章历史 +

摘要

为解决新能源场站生产管控混乱、运维低效等问题,借助大数据、云平台、物联网等相关技术的迅猛发展,建设新能源监控与大数据中心,以提高新能源场站的管控能力,提升新能源发电企业效益。现有的新能源大数据平台多侧重于单一机型或场站的智能化优化,缺乏集团级新能源业务的整体统筹,难以实现多种设备、不同系统间的协调与融合。针对现阶段新能源大数据平台建设的局限性,建设集团级新能源监控与大数据中心,实现资源与经验的高度融合与共享,已成为新能源行业发展的必然。依托中国大唐集团新能源两级中心建设背景,梳理新能源生产设备管控业务流程,设计云边协同的平台技术架构,实现从底层感知到顶层决策的多层次融合,为新能源异构资产上云、异构数据的分析处理提供指导,可为新能源行业集团级智慧平台建设提供参考与借鉴。

Abstract

In order to solve the problems of chaotic control and inefficient maintenance of new energy stations, with the rapid development of big data, cloud platform, internet of things and other related technologies, the construction of new energy monitoring and big data center can improve the management and control ability of new energy stations. At present, new energy big data platforms launched in the industry mostly focus on the intelligent optimization of a single model or station and lack the overall coordination of the group-level new energy business, which makes it difficult to achieve the coordination and integration of various equipment and different systems. In view of the limitations of new energy big data platform construction at the present stage, it has become inevitable for the development of the new energy industry to build a group-level new energy monitoring and big data center to achieve a high degree of integration and sharing of resources and experience. In this paper, relying on the construction background of China Datang Corporation new energy two-level center, sorting out the business process of new energy production equipment management and control and designing the platform technical architecture of cloud-side collaboration, could realize the multilevel fusion of from the bottom perception to the top decision-making and provide guidance for analysis and processing of new energy heterogeneous assets and data and design of group-level new energy big data platform.

关键词

云边协同 / 监控与大数据平台 / 架构设计 / 新能源

Key words

cloud-side collaboration / monitoring and big data platform / architecture design / new energy

引用本文

导出引用
王丽杰, 张喜平, 冯强, . 基于云边协同的新能源监控与大数据平台构建[J]. 分布式能源. 2021, 6(1): 44-50 https://doi.org/10.16513/j.2096-2185.DE.2106002
Lijie WANG, Xiping ZHANG, Qiang FENG, et al. Construction of New Energy Monitoring and Big Data Platform Based on Cloud-Side Collaboration[J]. Distributed Energy Resources. 2021, 6(1): 44-50 https://doi.org/10.16513/j.2096-2185.DE.2106002
中图分类号: TM614   

参考文献

[1]
张喜平,赵维,王丽杰. 新能源大数据平台物联网数据接入架构设计与实现[J]. 分布式能源2020, 5(6): 33-38.
ZHANG Xiping, ZHAO Wei, WANG Lijie. Design and implementation of data access architecture of internet of things for new energy big data platform[J]. Distributed Energy, 2020, 5(6): 33-38.
[2]
吕明明. 集控中心在风电企业管理中的创新研究[J]. 神华科技2019, 17(5): 3-7.
LYU Mingming. Study on innovation of centralized control center in wind power enterprises[J]. Shenhua Science and Technology, 2019, 17(5): 3-7.
[3]
吴智泉. 推进智慧风电建设,提高风电核心竞争力[J]. 中国经济周刊2019 (10): 108-109.
[4]
吴智泉,王政霞. 智慧风电体系架构研究[J]. 分布式能源2019, 4(2): 8-15.
WU Zhiquan, WANG Zhengxia. Smart wind power system architecture[J]. Distributed Energy, 2019, 4(2): 8-15
[5]
侯彦全,程楠,侯雪. 远程运维服务模式研究——以金风科技为例[J]. 工业经济论坛2017, 4(2): 68-73.
HOU Yanquan, CHENG Nan, HOU Xue. Study on remote operation service——Uses Goldwind as an example[J]. Industrial Economy Review, 2017, 4(2): 68-73.
[6]
朱程. 远景“智慧风场管理”:运用物联网技术实现“无人值守”[J]. 中国信息安全2016(10): 60-62.
[7]
孙一琳. 量云:智慧让风电场“能动”起来[J]. 风能2019(7): 38-40.
[8]
孙玉敏. 上海电气掘金“智慧风场”[J]. 上海国资2016 (5): 56-57.
[9]
阳熹,杨源. 智慧型海上风电场一体化监控系统方案设计[J]. 南方能源建设2019, 22(1): 48-54.
YANG Xi, YANG Yuan. Design of smart offshore wind farm integration monitoring system[J]. Southern Energy Construction, 2019, 22(1): 48-54.
[10]
刘凤友,权锋,徐汉坤. 基于数字化的可视化风电项目智慧管理解决方案[J]. 水力发电2020, 46(4): 101-104.
LIU Fengyou, QUAN Feng, XU Hankun. Construction of visual wind power project management platform based on BIM + GIS[J]. Water Power, 2020, 46(4): 101-104.
[11]
陈国旗. 风电场集控中心综合管理平台远程监控系统的设计与实现[D]. 长春:吉林大学,2015.
CHEN Guoqi. Design and implementation of remote monitoring system for the integrated management platform of wind farm[D]. Changchun: Jilin University, 2015.
[12]
赵少东,王程斯. 基于异构计算与实时可视化技术的综合能源大数据平台研究与应用[J]. 微型电脑应用2019, 35(11): 96-99.
ZHAO Shaodong, WANG Chengsi. Research and application of intrgrated energy big data platform based on hererogeneous computing and real-time visualization technology[J]. Microcomputer Application, 2019, 35(11): 96-99.
[13]
石睿,马风雷. 基于数据挖掘技术的风电新能源大数据平台构建[J]. 吉林工程技术师范学院学报2017, 33(12): 108-110.
SHI Rui, MA Fenglei. A new energy big data platform for wind power based on the data mining technology[J]. Journal of Jilin Engineering Normal University, 2017, 33(12): 108-110.
[14]
张自强,延亮,周识远. 基于云架构的分布式新能源智能服务平台构建[J]. 电子设计工程2020(21): 154-158.
ZHANG Ziqiang, YAN Liang, ZHOU Shiyuan. Construction of cloud based distributed new energy intelligent service platform[J]. Electronic Design Engineering, 2020(21): 154-158.
[15]
孙伟,叶林. 区域风电集控中心集中式风功率预测系统关键技术研究[C]//中国农业机械工业协会风力机械分会.第七届中国风电后市场交流合作大会论文集:中国农业机械工业协会风力机械分会,2020: 5.
[16]
姚惠. 风电场功率预测预报问题及其管理提升建议[J]. 企业改革与管理2020(1): 209-210.
[17]
武佳卉,邵振国,杨少华,等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术2020, 21(11): 1-6.
WU Jiahui, SHAO Zhenguo, YANG Shaohua, et al. Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical Engineering, 2020, 21(11): 1-6.
[18]
王旭东. 面向智慧风场的运维管理关键技术研究. [D] 杭州:浙江大学,2019.
WANG Xudong. Research on key technologies ofoperation maintenance and management in wind farm[D]. Hangzhou: Zhejiang University, 2019.
[19]
魏嘉. 大数据下风电机组齿轮箱故障诊断方法研究[D] 北京:华北电力大学,2017.
WEI Jia. Research on the fault diagnosis methods of wind turbine gearbox under the big data[D]. Beijing: North China Electric Power University, 2017.

PDF(3716 KB)

Accesses

Citation

Detail

段落导航
相关文章

/