PDF(1348 KB)
PDF(1348 KB)
PDF(1348 KB)
退役电池梯次利用安全性分析
Safety Analysis of Cascaded Utilization of Retired Batteries
为解决环境污染和资源紧缺问题,国家大力支持发展新能源汽车产业,随着电动汽车数量的增加,车用退役电池如何回收利用成为产业发展的关键问题。从国内外政策分析、梯次利用环节的安全问题剖析等方面考虑退役电池梯次利用的安全性。梯次利用环节包括退役电池收集拆解、筛选、重组、应用等,着重从筛选重组环节入手,结合退役电池健康状态和剩余容量的状态评估,进行一致性分选的安全分析;同时根据现有的重组技术改善电池一致性差的问题,并对重组系统的安全性进行评估。依据上述分析,给出退役电池进行梯次利用各环节所存在的安全隐患,提出相应的管理政策,保障电池梯次利用的安全,为未来发展退役电池的梯次利用系统提供了参考。
In order to solve the problems of environmental pollution and resource shortage, our government strongly supports the development of the new energy vehicle industry. With the increase of the number of electric vehicles, how to recycle the retired batteries for automobile has become a key issue for the development of the industry. The safety of cascaded utilization of retired batteries was considered from the aspects of domestic and foreign policy analysis and safety analysis of the cascaded utilization process. Cascaded utilization includes decommissioned batteries collection and disassembly, screening, recombination, application, etc., focusing on screening and recombination, combined with the health status of decommissioned batteries and the state evaluation of the remaining capacity, consistency sorting safety analysis. At the same time, the problem of poor battery consistency was improved according to the existing recombination technology, and the safety of the recombination system was evaluated. On the basis of the above analysis, the hidden safety risks in each link of the phased utilization of retired batteries are presented, and the corresponding management policies are proposed to guarantee the safety of the cascaded utilization of batteries, which provides a reference for the future development of the cascaded utilization system of retired batteries.
电池梯次利用 / 电池状态评估 / 安全性 / 一致性分选 / 均衡结构 / 柔性成组技术
cascaded utilization of battery / battery status assessment / security / consistent sorting / equilibrium structure / flexible group technology
| [1] |
江凯. 基于梯级利用的新能源汽车动力电池回收利用研究[J]. 蓄电池,2019, 56(2): 51-54, 96.
|
| [2] |
王斑. 我国新能源汽车动力电池回收体系的发展现状及建议[J]. 物流科技,2019, 42(2): 72-75.
|
| [3] |
国务院. 国务院关于印发节能与新能源汽车产业发展规划(2012—2020年)的通知[EB/OL]. (2012-07-09)[2020-09-30].
|
| [4] |
吴盛军. 微电网中电动汽车储能优化控制及储能梯级利用研究[D]. 南京:东南大学,2017.
|
| [5] |
刘文婷. 退役电池梯次利用须把好安全关[N]. 新能源汽车报,2019-06-03(004).
|
| [6] |
来小康. 关于动力电池梯次利用的一些思考[J]. 储能科学与技术,2020, 9(2): 598-602.
|
| [7] |
李雪早. 新能源汽车动力电池回收利用浅析[J]. 汽车维护与修理,2018(19): 1-9.
|
| [8] |
夏重凯. 动力电池梯次利用现状及政策分析[J]. 汽车与配件,2016(38): 42-45.
|
| [9] |
杨若岑,冬雷,廖晓钟,等. 电池剩余容量估算方法综述[J]. 电气技术,2019, 20(10): 1-5, 57.
|
| [10] |
吴蒙. 退役动力蓄电池梯次利用现状、问题及对策[J]. 资源再生,2019(10): 28-31.
|
| [11] |
孙国跃,陈勇. 退役动力电池梯次利用筛选指标的实验研究[J]. 电源技术,2018, 42(12): 1818-1821.
|
| [12] |
朱运征,李志强,王浩,等. 集装箱式储能系统用梯次利用锂电池组的一致性管理研究[J]. 电源学报,2018, 16(4): 80-86.
|
| [13] |
谌虹静. 锂离子动力电池剩余寿命预测与退役电池分选方法研究[D]. 南京:东南大学,2019.
|
| [14] |
许梦蝶. 退役电池储能利用主动均衡控制系统研究与设计[D]. 武汉:武汉理工大学,2018.
|
| [15] |
吴小员,王俊祥,田维超,等. 基于应用需求的退役电池梯次利用安全策略[J]. 储能科学与技术,2018, 7(6): 1094-1104.
|
| [16] |
李建林,李雅欣,吕超,等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化,2020, 44(13): 172-183.
|
| [17] |
步传宇,姜昆,任军,等. 基于改进型ASRCKF算法的锂离子电池荷电状态估计[J]. 广东电力,2020, 33(10): 16-25.
|
| [18] |
任东生,冯旭宁,韩雪冰,等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术,2018, 7(6): 957-966.
|
| [19] |
王其钰,王朔,张杰男,等. 锂离子电池失效分析概述[J]. 储能科学与技术,2017, 6(5): 1008-1025.
|
| [20] |
赵光金,邱武斌. 退役磷酸铁锂电池容量一致性及衰减特征研究[J]. 全球能源互联网,2018, 1(3): 383-388.
|
| [21] |
郭杰,王小鹏,孙春霞,等. 动力电池串并联结构重组的均衡充电方法[J]. 电力自动化设备,2019, 39(5): 163-168.
|
| [22] |
徐洁. 基于下垂控制的DC-DC级联型储能变流器研究[D]. 北京:北京交通大学,2019.
|
| [23] |
崔强. 适用于梯次利用电池的半桥级联型储能系统的研制[D]. 北京:北京交通大学,2019.
|
| [24] |
许苑,李涛,周杨林,等. 退役电池储能系统中可重构电池网络技术应用[J]. 电源技术,2020, 44(6): 908-910.
|
| [25] |
王玕,赵世伟,杨向宇. 基于电压闭环滑模控制的变步长电导增量法MPPT策略[J]. 可再生能源,2018, 36(4): 506-511.
|
| [26] |
王立舒,王慧杰,赵嘉玮,等. 基于电导-模糊双模式的MPPT优化控制[J]. 太阳能学报,2017, 38(7): 1847-1853.
|
| [27] |
刘爽,牟龙华,许旭锋,等. 电力电子器件故障对微电网运行可靠性的影响[J]. 电力系统保护与控制,2017, 45(24): 63-70.
|
| [28] |
韩华春,史明明,袁晓冬. 动力电池梯次利用研究概况[J]. 电源技术,2019, 43(12): 2070-2073.
|
/
| 〈 |
|
〉 |