冷热电三联供系统在餐厨垃圾处理项目中的应用研究

张杰, 陈志刚, 顾根永, 吴明辉

分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 62-66.

PDF(1136 KB)
PDF(1136 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 62-66. DOI: 10.16513/j.2096-2185.DE.2106012
应用技术

冷热电三联供系统在餐厨垃圾处理项目中的应用研究

作者信息 +

Research on Application of Combined Cooling, Heating and Power System in Food Waste Treatment Project

Author information +
文章历史 +

摘要

为实现餐厨垃圾的资源化利用,各地迅速新建餐厨垃圾处理厂。由于餐厨垃圾处理项目存在达产的滞后性及处理量的波动性等问题,造成餐厨垃圾处理项目中沼气利用系统规模及配置不合理,沼气发电机组运行效率低,经济性较差,沼气资源化利用未得到体现。以某新建餐厨垃圾处理项目为例,结合已投案例能耗数据,详细分析项目沼气产量,电负荷、蒸汽负荷等能耗数据,采用“以气定电,欠负荷”的设计原则确定沼气冷热电三联供(combine cooling, heating and power,CCHP)系统的装机规模和系统运行策略。最后通过与常规处理方式对比,从经济效益、节能效益和环境效益等3个方面综合分析了沼气CCHP系统的可行性及合理性。

Abstract

In order to realize the resource utilization of food waste, food waste treatment plants are rapidly built in everywhere. However, due to the lag reaching the production capacity and the fluctuation of treatment capacity of the food waste treatment plants, the scale and configuration of the food waste treatment plants biogas utilization system are unreasonable, the operating efficiency of the biogas generator set is low, the economy is poor, and the resource utilization of biogas has not been reflected. Taking a new food waste treatment plants project as an example, combining with the energy consumption data of the production case, analyze in detail the energy consumption data of the project's biogas production, electric load, steam load, etc., and adopt the design principle of "gas to determine electricity, underload" to determine biogas the installed capacity and system operation strategy of the combined cooling, heating and power (CCHP) system. Finally, through comparison with conventional treatment methods, the feasibility and rationality of the biogas CCHP system are comprehensively analyzed from three aspects: economic benefits, energy-saving benefits and environmental benefits.

关键词

冷热电三联供(CCHP) / 餐厨垃圾 / 沼气发电 / 欠负荷设计

Key words

combine cooling, heating and power(CCHP) / food waste / biogas power generation / underload

引用本文

导出引用
张杰, 陈志刚, 顾根永, . 冷热电三联供系统在餐厨垃圾处理项目中的应用研究[J]. 分布式能源. 2021, 6(1): 62-66 https://doi.org/10.16513/j.2096-2185.DE.2106012
Jie ZHANG, Zhigang CHEN, Genyong GU, et al. Research on Application of Combined Cooling, Heating and Power System in Food Waste Treatment Project[J]. Distributed Energy Resources. 2021, 6(1): 62-66 https://doi.org/10.16513/j.2096-2185.DE.2106012
中图分类号: TK6   

参考文献

[1]
浙江省住房和城乡建设厅. 餐厨垃圾资源化利用技术规程:DB33/T 1180—2019[S]. 2019.
[2]
王耀军. 国内餐厨垃圾处理现状与发展趋势分析[J]. 节能与环保2019(8): 47-48.
WANG Yaojun. Current situation and development trend of domestic disposal of kitchen waste[J]. Energy Conservation and Environmental Protection, 2019(8): 47-48.
[3]
邓俊. 餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报2019, 9(6): 637-642.
DENG Jun. Harmless treatment and resource utilization of kitchen waste: development status and trend[J]. Journal of Environmental Engineering Technology, 2019, 9(6): 637-642.
[4]
邴君妍,罗恩华,金宜英,等. 中国餐厨垃圾资源化利用系统建设现状研究[J]. 环境科学与管理2018, 43(4): 39-43.
BING Junyan, LUO Enhua, JIN Yiying, et al. Current situation of food waste recycling in China[J]. Environmental Science and Management, 2018, 43(4): 39-43.
[5]
王凯军,王婧瑶,左剑恶,等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报2020, 14(7): 1735-1742.
WANG Kaijun, WANG Jingyao, ZUO Jian'e, et al. Analysis and suggestion of current food waste anaerobic digestion technology in China[J]. Journal of Environmental Engineering, 2020, 14(7): 1735-1742.
[6]
HE M, SUN Y, ZOU D, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94.
[7]
ZHANG F, WU Q. Functional materials development from kitchen waste[J]. Procedia Environmental Sciences, 2012, 16(3): 70-74.
[8]
ZHANG R H, HAMED M, HARTMAN K, et al. Characterization of food waste as feedstock for anaerobic digestion[J]. Bioresource Technology, 2007, 98(4): 929-935.
[9]
LIU G Q, ZHANG R H, HAMED M, et al. Effect of feed to inoculum ratios on biogas yields of food and green wastes[J]. Bioresource Technology, 2009, 100(21): 5103-5108.
[10]
王延昌,袁巧霞,谢景欢,等. 餐厨垃圾厌氧发酵特性的研究[J]. 环境工程学报2009, 9(3): 1677-1682.
WANG Yanchang, YUAN Qiaoxia, XIE Jinghuan, et al. Characteristic studies on anaerobic fermentation for kitchen waste[J]. Chinese Journal of Environmental Engineering, 2009, 9(3): 1677-1682.
[11]
夏芳芳,谭婧,周洋,等. 杭州天子岭餐厨垃圾厌氧消化沼气项目案例研究[J]. 中国沼气2018, 36(2): 76-80.
XIA Fangfang, TAN Jing, ZHOU Yang, et al. Case study of Hangzhou Tianziling food waste anaerobic digestion project[J]. China Biogas 2018, 36(2): 76-80.
[12]
周建华,陈锋. 某典型餐厨垃圾综合处理项目实例[J]. 环境工程2020, 38(8): 47-51.
ZHOU Jianhua, CHEN Feng. An example of a typical kitchen waste comprehensive treatment project in China[J]. Environmental Engineering, 2020, 38(8): 47-51.
[13]
戴永庆. 燃气空调技术及应用[M]. 北京:机械工业出版社,2004: 255-260.
[14]
韩中合,祁超,向鹏,等. 分布式能源系统效益分析及综合评价[J]. 热力发电2018, 47(2): 31-36.
HAN Zhonghe, QI Chao, XIANG Peng, et al. Benefit analysis and comprehensive evaluation for distributed energy system[J]. Thermal Power Generation, 2018, 47(2): 31-36.
[15]
高赛赛,张雪梅,郭甲生,等. 分布式能源系统的评价方法[J]. 煤气与热力2018, 38(1): 1-5.
GAO Saisai, ZHANG Xuemei, GUO Jiasheng, et al. Evaluation methods of distributed energy system[J]. Gas & Heat, 2018, 38(1): 1-5.
[16]
国家统计局能源统计司. 中国能源统计年鉴[M]. 北京:中国统计出版社,2015.
Department of Energy Statistics, National Bureau of Statistics, People's Republic of China. China Energy Statistical Yearbook[M]. Beijing: China Statistics Press, 2015.
[17]
张培栋,李新荣,杨艳丽,等. 中国大中型沼气工程温室气体减排效益分析[J]. 农业工程学报2008, 24(9): 239-243.

PDF(1136 KB)

Accesses

Citation

Detail

段落导航
相关文章

/