风力机尾迹冲击在线检测算法

孙涛, 段琦玮, 党群, 冯强

分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 51-55.

PDF(5353 KB)
PDF(5353 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (1) : 51-55. DOI: 10.16513/j.2096-2185.DE.2106015
应用技术

风力机尾迹冲击在线检测算法

作者信息 +

On-Line Detection Algorithm of Wind Turbine Wake Impact

Author information +
文章历史 +

摘要

风电场上风向风力机风轮的尾迹将极大地影响下风向风力机的发电量和寿命。通常,如果在风电场建成后检测到尾迹效应,风电场运营商会采用如尾迹重定向,诱导因数控制等控制技术以降低尾迹的影响,为此有必要开发一种能够在线检测尾迹撞击风轮的技术。现有的风力机尾迹检测手段存在高成本或低可靠性的缺陷,提出了一种基于应变检测的实时在线数据分析方法。该方法可以在风轮被全部尾迹击中和部分尾迹击中的情况下,为控制系统提供可靠的尾迹撞击检测结果。采用美国可再生能源实验室开发的风电场模拟工具FAST.Farm,对所提出的方法在均匀风和湍流风情况下进行了仿真,仿真结果验证了本方法在典型风况条件下的有效性。

Abstract

The wake of upwind wind turbine in wind farm will greatly affect the power generation and life of downwind wind turbine. Usually, if the wake effect is detected after the wind farm is built, the wind farm operator will use control techniques such as wake redirection and inductive factor control to reduce the impact of the wake.To this end, it is necessary to develop a technology that can detect the impact of the wake on the wind turbine online. The existing methods of wind turbine wake detection have the defects of high cost or low reliability. A real-time online data analysis method based on strain detection is proposed. This method can provide reliable wake impact detection results for the control system when the wind wheel is hit by all or part of the wake. FAST.Farm, a wind farm simulation tool developed by the renewable energy laboratory in the united states, was used to simulate the proposed method under both uniform and turbulent wind conditions. The simulation results verify the effectiveness of the proposed method under typical wind conditions.

关键词

尾迹坑 / 尾迹冲击 / 尾迹检测 / 风力机

Key words

wake pit / wake impact / wake detection / wind turbine

引用本文

导出引用
孙涛, 段琦玮, 党群, . 风力机尾迹冲击在线检测算法[J]. 分布式能源. 2021, 6(1): 51-55 https://doi.org/10.16513/j.2096-2185.DE.2106015
Tao SUN, Qiwei DUAN, Qun DANG, et al. On-Line Detection Algorithm of Wind Turbine Wake Impact[J]. Distributed Energy Resources. 2021, 6(1): 51-55 https://doi.org/10.16513/j.2096-2185.DE.2106015
中图分类号: TK29   

参考文献

[1]
马伟哲,程韧俐,史军,等. 考虑风电场模型的仿射区间潮流计算[J]. 广东电力2019, 32(11): 28-37.
MA Weizhe, CHENG Renli, SHI Jun, et al. Affine arithmetic-based interval power flow calculation considering wind farm model[J]. Guangdong Electric Power, 2019, 32(11): 28-37.
[2]
BOTTASSO C L, CACCIOLA S, SCHREIBER J. Local wind speed estimation, with application to wake impingement detection[J]. Renewable Energy, 2017, 116(pt. a): 155-168.
[3]
FLEMING P A, GEBRAAD P M O, LEE S, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 2014, 70(oct.): 211-218.
[4]
FLEMING P A, NING A, GEBRAAD P M O, et al. Wind plant system engineering through optimization of layout and yaw control[J]. Wind Energy, 2016, 19(2): 329-344.
[5]
JIMÉNEZA, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2009, 13(6): 559-572.
[6]
WANG J, FOLEY S, NANOS E M, et al. Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel[J]. Journal of Physics: Conference Series, 2017, 854: 012048.
[7]
FILIPPO C, VLAHO P, JOHANNES S, et al. Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization[J]. Journal of Physics Conference Series, 2016, 753(3): 032006.
[8]
GEBRAAD P M O, DAM F C V, WINGERDEN J W V. A model-free distributed approach for wind plant control[C]// American Control Conference (ACC), 2013. IEEE, 2013.
[9]
WU Z Y, LI Y Y. Real-time optimization of wind farm energy capture with delay compensated nested-loop extremum seeking control[C]// ASME 2017 Dynamic Systems and Control Conference. 2017.
[10]
ANNONI J, GEBRAAD P M O, SCHOLBROCK A K, et al. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model[J]. Wind Energy, 2016, 19: 1135-1150.
[11]
YANG Z, LI Y, SEEM J E. Individual Pitch Control for Wind Turbine Load Reduction Including Wake Modeling[C]// American Control Conference. IEEE, 2011.
[12]
ROTT A, DOEKEMEIJER B, SEIFERT J K, et al. Robust active wake control in consideration of wind direction variability and uncertainty[J]. Wind Energy, 2018, 3: 869-882.
[13]
FLEMING P, ANNONI J, SHAH J J, et al. Field test of wake steering at an offshore wind farm[J]. Wind Energy Science, 2017, 2(1): 229-239.
[14]
DOUBRAWA P, ANNONI J, JONKMAN J. Optimization-based calibration of FAST. Farm parameters against SOWFA[C]//36th Wind Energy Symposium of AIAA SciTech Forum, Kissimmee, FL, January 2018.

PDF(5353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/