PDF(1457 KB)
PDF(1457 KB)
PDF(1457 KB)
基于粒子群算法最小二乘支持向量机的日前光伏功率预测
Day-Ahead Photovoltaic Power Forecasting Based on Particle Swarm Optimization and Least Squares Support Vector Machine
准确预测光伏电站输出功率,是促进光伏并网发电,提高电网运行稳定性的主要途径之一。该文提出一种基于粒子群算法-最小二乘支持向量机(particle swarm optimization and least squares support vector machine,PSO-LSSVM)的日前光伏功率预测方法,该方法首先利用粒子群算法的全局搜索能力来获取最小二乘支持向量机的惩罚因子和核函数宽度,有效解决了最小二乘支持向量机难以快速精准寻找最优参数的问题;然后利用数值天气预报和光伏功率的历史数据对PSO-LSSVM模型进行训练,利用训练好的PSO-LSSVM模型对日前光伏功率进行预测。对比分析PSO-LSSVM模型与长短期记忆网络(long short-term memory,LSTM)模型、最小二乘支持向量机(least squares support vector machine,LSSVM)、PSO-BP模型的预测结果可知:PSO-LSSVM模型的预测精度高于LSTM模型、LSSVM模型和结合粒子群的BP神经网络(particle swarm optimization and back propagation, PSO-BP)模型,证明了所提PSO-LSSVM预测模型的优越性。
Accurate prediction of output power of photovoltaic power plant is one of the main ways to promote grid connected photovoltaic power generation and improve the stability of power grid operation. This paper proposed a day-ahead photovoltaic power forecasting method based on particle swarm optimization and least squares support vector machine (PSO-LSSVM). This method used the global search ability of PSO algorithm to obtain the penalty factor and kernel function width of LSSVM, which effectively solved the problem that LSSVM is difficult to find the optimal parameters quickly and accurately. Then, the historical data of numerical weather prediction (NWP) and photovoltaic power were used to train the PSO-LSSVM model, and the trained PSO-LSSVM model was used to forecast the day-ahead photovoltaic power. The forecasting results of PSO-LSSVM, long short-term memory(LSTM), least squares support vector machine(LSSVM) and PSO-BP models were compared and analyzed, and the comparison results show that the forecasting accuracy of PSO-LSSVM model is higher than those of LSTM, LSSVM and particle swarm optimization and back propagation (PSO-BP) models, which proves the superiority of the PSO-LSSVM forecasting model.
粒子群算法(PSO) / 最小二乘支持向量机(LSSVM) / 光伏功率预测
particle swarm optimization (PSO) / least squares support vector machine (LSSVM) / photovoltaic power forecasting
| [1] |
吕鑫,祁雨霏,董馨阳,等. 2020年光伏及风电产业前景预测与展望[J]. 北京理工大学学报(社会科学版), 2020, 22(2): 20-25.
|
| [2] |
黄少雄,王璨,孔庆竹,等. 含短期预测的光伏配电网智能调压策略[J]. 热力发电,2020, 49(7): 1-8.
|
| [3] |
吴攀. 光伏发电系统发电功率预测[J]. 发电技术,2020, 41(3): 231-236.
|
| [4] |
郑熠旻. 考虑功率偏差的工业园区光伏与储能联合优化[J]. 分布式能源,2019, 4(3): 16-20.
|
| [5] |
肖白,王成龙,董凌,等. 基于多源数据时点匹配的发电功率数据融合方法[J]. 分布式能源,2019, 4(5): 29-34.
|
| [6] |
何锋,章义军,章建华,等. 基于相似日和分位数回归森林的光伏发电功率概率密度预测[J]. 热力发电,2019, 48(7): 64-69.
|
| [7] |
龚莺飞,鲁宗相,乔颖,等. 光伏功率预测技术[J]. 电力系统自动化,2016, 40(4): 140-151.
|
| [8] |
赵书强,胡利宁,田捷夫,等. 基于中长期风电光伏预测的多能源电力系统合约电量分解模型[J]. 电力自动化设备,2019, 39(11): 13-19.
|
| [9] |
张俊,贺旭,陆春良,等. 基于数值天气预报的光伏功率短期预测分类组合算法[J]. 广东电力,2019, 32(6): 55-60.
|
| [10] |
李雯,魏斌,韩肖清,等. 面向滚动优化调度的光伏发电功率日内超短期预测[J]. 电力系统及其自动化学报,2020, 32(11): 43-49.
|
| [11] |
赖昌伟,黎静华,陈博,等. 光伏发电出力预测技术研究综述[J]. 电工技术学报,2019, 34(6): 1201-1217.
|
| [12] |
叶林,陈政,赵永宁,等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化,2015, 39(16): 16-22.
|
| [13] |
崔洋,孙银川,常倬林. 短期太阳能光伏发电预测方法研究进展[J]. 资源科学,2013, 35(7): 1474-1481.
|
| [14] |
荆博. 光伏电站短期功率预测方法研究[D]. 镇江:江苏大学,2017.
|
| [15] |
赵滨滨,王莹,王彬,等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源,2019, 37(6): 820-823.
|
| [16] |
沈金荣,惠杰,倪莹,等. 环境因素对光伏发电量综合回归分析[J]. 可再生能源,2016, 34(7): 997-1002.
|
| [17] |
蒋峰,王宗耀,张鹏. 基于灰色-加权马尔可夫链的光伏发电量预测[J]. 电力系统保护与控制,2019, 47(15): 55-60.
|
| [18] |
张雨金,杨凌帆,葛双冶,等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制,2018, 46(21): 118-124.
|
| [19] |
殷豪,陈云龙,孟安波,等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报,2019, 40(7): 1866-1873.
|
| [20] |
陈锦铭,郭雅娟,伍旺松,等. 基于数据预处理与特征表示的多核SVM短期光伏发电预测[J]. 水电能源科学,2018, 36(9): 205-208, 147.
|
/
| 〈 |
|
〉 |