PDF(1445 KB)
PDF(1445 KB)
PDF(1445 KB)
基于随机规划的风光互补系统容量配比方法
Capacity Allocation Method of Wind-Solar Hybrid System Based on Stochastic Programming Theory
在风光互补系统的容量配比研究中,并未考虑风光发电实际输出功率的随机性。提出了一种基于随机规划的风光互补系统容量配比方法。考虑到风光发电的实际输出功率具有随机性,基于随机规划理论建立以功率平稳输出为目标的风光互补系统容量配比模型;利用基于随机模拟技术的粒子群算法求解模型,探讨了风光互补系统的最佳风光容量配比;并以琼海市某地的实际风光资源为例,采用Matlab进行模拟验证,结果表明53%的风电配合47%的光电时,风光互补系统的输出功率最平稳。此外,将提出的方法应用到不同地区,结合中国风光资源分布情况,最终得到中国不同地区的最佳风光容量配比。所提方法为今后风光互补系统的设计规划和城市区域间能源综合调整提供了一定的参考,同时为风光容量配比的研究提供了一种新思路。
In the research on the capacity ratio of wind-solar hybrid systems, the randomness of the actual output power of wind-solar power generation is not considered. Therefore, a capacity allocation method of a wind-solar hybrid system based on stochastic programming was proposed in this paper. Considering the randomness of the actual output power of wind-solar power generation, a capacity allocation model of the wind-solar hybrid system was established based on stochastic programming theory, aiming at stable power output. The model was solved by particle swarm optimization (PSO) algorithm based on stochastic simulation technology, and the optimal wind-solar capacity ratio of the wind-solar hybrid system was discussed. Taking the actual wind-solar resources of a certain place in Qionghai city as an example, Matlab was used for simulation verification. The results show that when 53% wind power is combined with 47% photoelectricity, the output power of the wind-solar complementary system is the most stable. Besides, the proposed method was applied to different regions, combining with the distribution of China's wind-solar resources, and finally, the optimal ratio of wind-solar capacity in different regions of China was obtained. This method provides a certain reference for the design and planning of the wind-solar complementary system and the comprehensive adjustment of energy resources among urban areas in the future, and also provides a new idea for the study of wind-solar capacity ratio.
风光互补系统 / 风光容量配比 / 随机规划 / 机会约束 / 随机模拟技术 / 粒子群算法(PSO)
wind-solar hybrid system / wind-solar capacity ratio / stochastic programming / chance-constrained / stochastic simulation technology / particle swarm optimization (PSO)
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
李湃,黄越辉,王跃峰,等. 含抽蓄电站的多端柔性直流电网风光接入容量配比优化方法[J]. 中国电力,2019, 52(4): 32-40.
|
| [6] |
|
| [7] |
朱兰,严正,杨秀,等. 风光储微网系统蓄电池容量优化配置方法研究[J]. 电网技术,2012, 36(12): 26-31.
|
| [8] |
|
| [9] |
|
| [10] |
于东霞,张建华,王晓燕,等. 并网型风光储互补发电系统容量优化配置[J]. 电力系统及其自动化学报,2019, 31(10): 59-65.
|
| [11] |
齐志远,郭佳伟,李晓炀. 基于联合概率分布的风光互补发电系统优化配置[J]. 太阳能学报,2018, 39(1): 203-209.
|
| [12] |
李益民,王关平,马建立,等. 基于天牛须搜索遗传算法的风光柴储互补发电系统容量优化配置研究[J]. 储能科学与技术,2020, 9(3): 918-926.
|
| [13] |
曹阳,黄越辉,袁越,等. 基于时序仿真的风光容量配比分层优化算法[J]. 中国电机工程学报,2015, 35(5): 1072-1078.
|
| [14] |
|
| [15] |
杨晓萍,张倩. 基于随机规划的风光互补系统特性分析与准入功率极限计算[J]. 太阳能学报,2018, 39(3): 619-626.
|
| [16] |
|
| [17] |
赵瑾,雍静,郇嘉嘉,等. 基于长时间尺度的园区综合能源系统随机规划[J]. 电力自动化设备,2020, 40(3): 62-67.
|
| [18] |
科学技术部. 风电场风能资源评估方法:GB/T 18710—2002[S]. 北京:中国标准出版社,2002.
Ministry of Science and Technology of the People's Republic of China. Evaluation method of wind energy resources for wind farms: GB/T 18710—2002[S]. Beijing: China Quality and Standards Publishing & Media Co., Ltd., 2002.
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
蒋平,严栋,吴熙. 考虑风光互补的间歇性能源准入功率极限研究[J]. 电网技术,2013, 37(7): 1965-1970.
|
| [23] |
《运筹学》教材编写组. 运筹学[M]. 北京:清华大学出版社,2013.
Editing Group of Operations Research Teaching Materials. Operations research[M]. Beijing: Tsinghua University Press, 2013.
|
| [24] |
|
/
| 〈 |
|
〉 |