锂金属负极的研究策略

何天贤, 顾凤龙

分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 10-18.

PDF(2000 KB)
PDF(2000 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 10-18. DOI: 10.16513/j.2096-2185.DE.2106506
综述

锂金属负极的研究策略

作者信息 +

Research Strategy of Lithium Metal Anode

Author information +
文章历史 +

摘要

全固态电池由正极材料、固态电解质和锂金属负极组成,锂金属负极是全固态电池的重要组成部分。锂金属负极的成功应用不仅可以提高电池能量密度和安全性能,还能降低现有电化学体系的制造成本,全面取代液态锂离子电池。但在实际的应用过程当中,锂金属负极还存在着下列难以解决的问题:锂枝晶、“死锂”粉末化、体积膨胀和抗空气氧气稳定性。针对以上的问题,综述了先进的锂金属负极研究策略,并给出了解决方案,最后提出了展望。

Abstract

All-solid-state batteries are composed of cathode materials, solid electrolytes and lithium metal anodes. Lithium metal anodes are an important part of all-solid-state batteries. The successful application of lithium metal anode can not only improve the energy density and safety performance of the battery, but also reduce the manufacturing cost of the existing electrochemical system and completely replace the liquid lithium ion battery. However, in the actual application process, the lithium metal negative electrode still has the following difficult to solve problems: lithium dendrites, powdering, volume expansion and air stability. In response to the above problems, this article reviews some advanced lithium metal anode research strategies, gives its own solutions, and finally puts forward a prospect.

关键词

锂金属负极 / 全固态电池 / 锂枝晶

Key words

lithium metal anode / all-solid-state batteries / lithium dendrites

引用本文

导出引用
何天贤, 顾凤龙. 锂金属负极的研究策略[J]. 分布式能源. 2021, 6(3): 10-18 https://doi.org/10.16513/j.2096-2185.DE.2106506
Tianxian HE, Fenglong GU. Research Strategy of Lithium Metal Anode[J]. Distributed Energy Resources. 2021, 6(3): 10-18 https://doi.org/10.16513/j.2096-2185.DE.2106506
中图分类号: TK02   

参考文献

[1]
HARRIS W S. Electrochemical studies in cyclic esters[D]. California: University of California, 1958.
[2]
ZHANG H, LI C M, Eshetu G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
[3]
REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884.
[4]
WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192: 1126-1127.
[5]
GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204-204.
[6]
AGARWAL R R, SELMAN J R. Electrochemical intercalation of lithium in graphite using a molten-salt cell[J]. Ecs Proceedings Volumes, 1986, 1: 377-388.
[7]
YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800.
[8]
ARMAND M B. Polymer solid electrolytes—An overview[J]. Solid State Ionics, 1983, 9-10(2): 745-754.
[9]
MAUGER A, JULIEN C M, GOODENOUGH J B, et al. Tribute to michel armand: From rocking chair—Li-ion to solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2019, 167: 070507.
[10]
LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[11]
SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1): 900.
[12]
LIU F F, WANG L F, ZHANG Z W, et al. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode[J]. Advanced Functional Materials, 2020, 30(23): 2001607.
[13]
ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 1-5.
[14]
LUO Y, LI T Y, ZHANG H Z, et al. Endogenous symbiotic Li3N/cellulose skin to extend the cycle life of lithium anode[J]. Angewandte Chemie International Edition, 2021.
[15]
ZHANG H Y, JU S L, XIA G L, et al. Dendrite-free Li-metal anode enabled by dendritic structure[J]. Advanced Functional Materials, 2021: 2009712.
[16]
LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[17]
SUN F, ZHOU D, HE X, et al. The morphological reversibility of modified-Li based anode for next generation batteries[J]. ACS Energy Letters, 2020, 5(1): 152-161.
[18]
SONG J, YE Y D, NIU Y J, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode[J]. Journal of the American Chemical Society, 2020, 142(19): 8818-8826.
[19]
JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021: 1-10.
[20]
YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Reports Physical Science, 2020, 1(7): 100119.
[21]
CHEN J Y, ZHAO J, LEI L N, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters, 2020, 20(5): 3403-3410.
[22]
CAO Z J, LI B, YANG S B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays[J]. Advanced Materials, 2019, 31(29): 1901310.
[23]
ZHAI P B, WANG T S, JIANG H N, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, 33(13): 2006247.
[24]
XU J H, DING C D, CHEN P, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews, 2020, 7(3): 031304.
[25]
LIU Q, ZHOU D, SHANMUKARAJ D, et al. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries[J]. ACS Energy Letters, 2020, 5(5): 1456-1464.
[26]
ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071.
[27]
ZHANG Y B, LV W, HUANG Z J, et al. An air-stable and waterproof lithium metal anode enabled by wax composite packaging[J]. Science Bulletin, 2019, 64(13): 910-917.
[28]
ZHAO Y M, WANG D W, GAO Y, et al. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer[J]. Nano Energy, 2019, 64: 103893.
[29]
LI X, YUAN L X, LIU D Z, et al. Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode[J]. Advanced Functional Materials, 2021: 2100537.
[30]
WEI C L, TAN L W, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte[J]. Energy Storage Materials, 2021, 34: 12-21.

基金

国家自然科学基金项目(21673085)

PDF(2000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/