太阳能界面蒸发的应用综述

凌童, 段慧玲, 闫煜杰, 王一丁

分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 1-9.

PDF(2592 KB)
PDF(2592 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 1-9. DOI: 10.16513/j.2096-2185.DE.2106508
综述

太阳能界面蒸发的应用综述

作者信息 +

Review on Application of Solar Interfacial Evaporation

Author information +
文章历史 +

摘要

太阳能界面蒸发是利用特定结构将能量局限在光吸收层,使水分在结构表面完成蒸发。由于太阳能界面蒸发器装置结构简单、占地空间小、能量利用率高,且对运行环境要求低,受到研究者的广泛关注。目前,研究者们从光吸收体材料、热量管理、蒸发器结构等方面切入,对太阳能界面蒸发方法进行了丰富研究,然而太阳能界面蒸发方法在应用方面的研究相对较少。太阳能界面蒸汽生成方法,由于其独特优势,不仅可以应用于海水淡化领域,在其他众多领域都具有应用潜力。从水资源管理、能源供给、医疗等方面对太阳能界面蒸发方法的应用领域进行梳理,并讨论了太阳能界面蒸发的潜在应用方向。这对于丰富太阳能界面蒸发的研究范畴,推动太阳能界面蒸发在应用层面的发展,探索太阳能界面蒸发在多领域的联合应用具有重要意义。

Abstract

Solar interfacial evaporation method is to use a specific structure to limit the energy in the light absorption layer, so that the water evaporates on the surface of the structure. Due to the simple structure, small space occupation, high energy utilization rate and low requirements for operating environment, solar interfacial evaporator has attracted wide attentions. Currently, researchers have conducted abundant researches on the solar interfacial evaporation method from the aspects of optical absorber materials, heat management, evaporator structure, etc. However, there are relatively few studies on the applications of solar interfacial evaporation method. Solar interfacial evaporation method due to its unique advantages, not only shows broad applications prospect in the field of seawater desalination, but also has great potential in many other fields. In this paper, the application fields of solar interfacial evaporation method are sorted out from the aspects of water resources management, energy supply and medical treatment. The potential applications of solar interfacial evaporation method are also discussed. It is of great significance to enrich the research scope of solar interfacial evaporation, promote the development of solar interfacial evaporation method at the application level, and explore the joint application of solar interfacial evaporation in many fields.

关键词

太阳能界面蒸发 / 水资源管理 / 能源供给 / 医疗

Key words

solar interfacial evaporation / water resources management / energy supply / medical treatment

引用本文

导出引用
凌童, 段慧玲, 闫煜杰, . 太阳能界面蒸发的应用综述[J]. 分布式能源. 2021, 6(3): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2106508
Tong LING, Huiling DUAN, Yujie YAN, et al. Review on Application of Solar Interfacial Evaporation[J]. Distributed Energy Resources. 2021, 6(3): 1-9 https://doi.org/10.16513/j.2096-2185.DE.2106508
中图分类号: TK51   

参考文献

[1]
国际能源署“2020世界能源展望”四大看点[J]. 中外能源2021, 26(2): 98.
[2]
TAO Peng, NI George, SONG Chengyi, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
[3]
WANG Xinzhi, HE Yurong, CHENG Gong, et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J]. Energy Conversion and Management, 2016, 130: 178-183.
[4]
ZHAO Q, HUANG Z, TIAN S, et al. Superwetting B4C bilayer foam for high cost-performance solar water purification[J]. Materials Today Energy, 2020(18): 100498.
[5]
ZHANG Chang, XIAO Peng, NI Feng, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge towards multifunctional solar-to-heat conversion[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5328-5337.
[6]
SHENG Chengmin, YANG Ning, YAN Yutao, et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation[J]. Applied Thermal Engineering, 2020, 167: 114712.
[7]
ZHANG Qi, FU Ze, YU Hongtao, et al. Nanoplating of a SnO2 thin-film on MXene-based sponge for stable and efficient solar energy conversion[J]. Journal of Materials Chemistry A, 2020, 8(16): 8065-8074.
[8]
ZHOU Suyuan, HUANG Shaolong, MING Yan, et al. A scalable, eco-friendly, and ultrafast solar steam generator fabricated using evolutional 3D printing[J]. Journal of Materials Chemistry A. 2021, 9, 9909-9917.
[9]
WU Xuan, GAO Ting, HAN Chenhui, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21): 1625-1633.
[10]
李金宝,谢竺航,杨雪,等. 炭黑/CNF复合光热转化材料的制备及性能研究[J]. 中国造纸2020, 39(7): 9-14.
LI Jinbao, XIE Zhuhang, YANG Xue, et al. Study on preparation and properties of carbon black/CNF composite photothermal conversion materials[J]. China Pulp & Paper, 2020, 39(7): 9-14.
[11]
郭星星. 石墨烯基复合纤维膜制备及其光热/光催化性能与机理[D]. 北京:中国地质大学,2020.
GUO Xingxing. Preparation of graphene-based composite fiber membranes and photothermal/photocatalytic performance and mechanism[D]. Beijing: China University of Geosciences, 2020.
[12]
LIU Yanming, YU Shengtao, FENG Rui, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials, 2015, 27(17): 2768-2774.
[13]
DAO V D, VU N H, YUN S. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy, 2019, 68: 104324.
[14]
GHASEMI H, NI G, MARCONNETA M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5(1): 798-801.
[15]
LI Chennan, GOSWAMI Y, STEFANAKOS E. Solar assisted sea water desalination: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 19(3): 136-163.
[16]
GONZáLEZ D, AMIGO J, SUáREZ F. Membrane distillation: Perspectives for sustainable and improved desalination[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 238-259.
[17]
PUGSLEY A, ZACHAROPOULOS A, MONDOL J D, et al. Global applicability of solar desalination[J]. Renewable Energy, 2016, 88(4): 200-219.
[18]
DELGADO W R, BEACH T, LUZZADDER-BEACH S. Solar desalination: Cases, synthesis, and challenges[J]. Wiley Interdisciplinary Reviews: Water, 2020, 1: e1434.
[19]
ABDELKAREEM M A, ASSAD M E H, SAYED E T, et al. Recent progress in the use of renewable energy sources to power water desalination plants[J]. Desalination, 2018, 435: 97-113.
[20]
XU Weichao, HU Xiaozhen, ZHUANG Shendong, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884.
[21]
LIU Changkun, PENG Ye, CAI Chaojie, et al. Enhancing solar desalination performance based on restricted salt ions transport[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105272.
[22]
熊辉,谢歆雯,王苗,等. 网状骨架CVD生长碳纳米管用于重盐水脱盐[J]. 物理化学学报2020, 36(9): 138-146.
XIONG Hui, XIE Xinwen, WANG Miao, et al. CVD grown carbon nanotubes on reticulated skeleton for brine desalination[J]. Acta Physico-Chimica Sinica, 2020, 36(9): 138-146.
[23]
NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519.
[24]
CHENG Shaoan, ZHEN Yu, LIN Zhufan, et al. A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine[J]. Chemical Engineering Journal, 2020, 401: 126108.
[25]
YUN Xia, HOU Qinfu, JUBAER H, et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy & Environmental Science, 2019, 12(6): 1840-1847.
[26]
ZHUANG Pengyu, FU Hanyu, XU Ning, et al. Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect[J]. Nanophotonics, 2020, 9(15): 4601-4608.
[27]
PENG Fangjun, XU Jie, BAI Xiaoli, et al. A janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation[J]. Solar Energy Materials and Solar Cells, 2021, 221: 110910.
[28]
CHIAVAZZO E, MORCIANO M, VIGLINO F, et al. Passive high-yield seawater desalination at below one sun by modular and low-cost distillation[J]. Nature Sustainability, 2018, 1: 763-772.
[29]
LOU Jinwei, LIU Yang, WANG Zhongyong, et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation[J]. ACS applied materials & interfaces, 2016, 8(23): 14628-14636.
[30]
张政. 超浸润多孔材料的制备及其光热转换性能研究[D]. 兰州:兰州理工大学,2020.
ZHANG Zheng. Preparation of super-infiltrating porous materials and its photothermal conversion properties[D]. Lanzhou: Lanzhou University of Technology, 2020.
[31]
HUANG Wei, SU Peiwu, CAO Yang, et al. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multi-functional solar distillation[J]. Nano Energy, 2020, 69: 104465.
[32]
耿艺耘. 三维石墨烯材料在放射性废液蒸发处理中的应用基础研究[D]. 上海:中国科学院大学(中国科学院上海应用物理研究所), 2020.
GENG Yiyun. Applied basic research of 3D graphene materials in the evaporation treatment of radioactive wastewater[D]. Shanghai: Shanghai Institute of Applied Physics University of Chinese Academy of Sciences, 2020.
[33]
KIM H, YANG S, SAMEER R R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356 (6336): 430-434.
[34]
王雪旸. 界面光热辅助的液体吸附剂基空气取水器[D]. 南京:南京大学,2020.
WANG Xueyang. Interfacial solar heating assisted liquidsorbent atmospheric water generator[D]. Nanjing: Nanjing University, 2020.
[35]
LI Xiuqiang, MIN Xinzhe, LI Jinlei, et al. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018, 2(11): 2477-2484.
[36]
ZHU Liangliang, GAO Minmin, WANG Xiaoqiao, et al. Pehself-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Energy Weekly News, 2018, 8(16): 1702149.
[37]
ZHU Liangliang, DING Tianpeng, GAO Minmin, et al. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation[J]. Advanced Energy Materials, 2019, 9(22): 1900250.
[38]
YANG Peihua, LIU Kang, CHEN Qian, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927.
[39]
XUE Guobin, XU Ying, DING Tianpeng, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321.
[40]
JAEHYEONG B, GWANGYUNV T, LIMSUH B, et al. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle[J]. Energy & Environ-mental Science, 2020, 13(2): 527-534.
[41]
周小兵. 木头器件上的水伏发电及其应用[D]. 成都:电子科技大学,2020.
ZHOU Xiaobing. Water-induced electricity generation and application by natural wood devices[D]. Chengdu: Institute of Fundamental and Frontier Sciences, 2020.
[42]
GAO Minmin, PEH C K, ZHU Liangliang, et al. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production[J]. Advanced Energy Materials, 2020, 10(23): 2000925.
[43]
ZHOU Yi, DING Tianpeng, GAO Minmin, et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production[J]. Nano Energy, 2020, 77: 105102.
[44]
NEUMANN E M. Home dialysis gets the spotlight—will it help?[J]. Nephrology news & issues, 2016, 30(4): 8-10.
[45]
VARGHESE K O, PAULOSE M, LATEMPA J T, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J]. Nano letters, 2009, 9(2): 731-737.
[46]
NEUMANN O, FERONTI C, NEUMANN D A, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J]. Proceedings of the National Academy of Ences, 2013, 110(29): 11677-11681.
[47]
ZHANG Yao, ZHAO Dengwu, YU Fan, et al. Floating rGO-based black membranes for solar driven sterilization[J]. Nanoscale, 2017, 9(48): 19384-19389.
[48]
李金磊. 基于界面加热的太阳能蒸汽灭菌[D]. 南京:南京大学,2019.
LI Jinlei. Interfacial heating-based solar steam sterilization[D]. Nanjing: Nanjing University, 2019.
[49]
CHANG Chao, TAO Peng, XU Jiale, et al. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18466-18474.
[50]
GENG Yang, SUN Wan, YING Peijin, et al. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation[J]. Advanced Functional Materials, 2021, 31, 2007648: 1-11.

基金

国家自然科学基金项目(51506044)
中央高校基本科研业务费(B200202162)

PDF(2592 KB)

Accesses

Citation

Detail

段落导航
相关文章

/