基于支持向量机的风电机组变桨系统故障诊断

张真真, 吴立东, 陈晓敏, 徐志轩, 曹善桥

分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 70-75.

PDF(1166 KB)
PDF(1166 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 70-75. DOI: 10.16513/j.2096-2185.DE.2106512
应用技术

基于支持向量机的风电机组变桨系统故障诊断

作者信息 +

Fault Diagnosis of Wind Turbine Pitch System Based on Support Vector Machine

Author information +
文章历史 +

摘要

风电机组变桨系统是风电机组发生故障最频繁的部件之一,对其故障类型的精确诊断能够提高风电机组维护计划的效率。针对异步电机和行星齿轮箱的各种故障类型,提出了一项以风电机组三相电流数据为基础的多分量故障诊断方法。该方法通过深度自动编码器从三相电流数据中提取特征向量,并采用支持向量机进行故障分类。上述方法以风电机组变桨驱动器为例进行验证,实验结果表明在变负载和变转速环境下,上述方法能够实现对风电机组变桨系统故障类型的准确识别和诊断。

Abstract

The rotor system of wind turbine is the most fragile parts of wind turbine, and accurate diagnosis of its fault categories can improve the effectiveness of wind turbine maintenance. A multi-component fault diagnosis method based on the three-phase currents data of wind turbine was proposed for various fault categories of induction motor and planetary gearbox. The method extracted feature vectors from three-phase currents data by deep auto-encoder and used support vector machine for fault classification. The above method was verified by an example of a rotor driver of wind turbine. The experimental results show that the method can accurately identify and diagnose the fault categories of rotor driver under variable load and variable speed environment.

关键词

变桨系统 / 三相电流 / 深度自动编码器 / 支持向量机

Key words

pitch system / three-phase current / deep auto-encoder / support vector machine

引用本文

导出引用
张真真, 吴立东, 陈晓敏, . 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源. 2021, 6(3): 70-75 https://doi.org/10.16513/j.2096-2185.DE.2106512
Zhenzhen ZHANG, Lidong WU, Xiaomin CHEN, et al. Fault Diagnosis of Wind Turbine Pitch System Based on Support Vector Machine[J]. Distributed Energy Resources. 2021, 6(3): 70-75 https://doi.org/10.16513/j.2096-2185.DE.2106512
中图分类号: TM83   

参考文献

[1]
WILKINSON M, HENDRIKS B, SPINATO F, et al. Methodology and results of the reliawind reliability field study[C]//European Wind Energy Conference, 2010: 20-23.
[2]
ZHANG X, ZHANG Q, ZHAO S, et al. Fault detection and isolation of the wind turbine benchmark: an estimation-based approach[J]. IFAC Proceedings Volumes, 2011, 44(1): 8295-8300.
[3]
李辉,杨超,李学伟,等. 风机电动变桨系统状态特征参量挖掘及异常识别[J]. 中国电机工程学报2014, 34(12): 1922-1930.
LI Hui, YANG Chao, LI Xuewei, et al. Conditions characteristic parameters mining and outlier identification for electric pitch system of wind turbine[J]. Proceedings of the CSEE, 2014, 34(12): 1922-1930.
[4]
CHEN B, MATTHEWS P, TAVNER P. Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS[J]. Expert Systems with Applications, 2013, 40(17): 6863-6876.
[5]
殷樾. 基于粒子群算法-最小二乘支持向量机的日前光伏功率预测[J]. 分布式能源2021, 6(2): 68-74.
YIN Yue. Day-ahead photovoltaic power forecasting based on particle swarm optimization and least squares support vector machine[J]. Distributed Energy, 2021, 6(2): 68-74.
[6]
顾军民,陈思函,马永光. 基于RBF神经网络的风电机组变桨系统故障预警[J]. 电力科学与工程2020, 36(12): 37-43.
GU Junming, CHEN Sihan, MA Guangyong. Research on fault early warning of wind turbine pitch system based on RBF neural network[J]. Electric Power Science and Engineering, 2020, 36(12): 37-43.
[7]
王爽心,郭婷婷,李蒙. 风电机组变工况变桨系统异常状态在线识别[J]. 中国电机工程学报2019, 39(17): 5144-5152, 5295.
WANG Shuangxin, GUO Tingting, LI Meng. On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J]. Proceedings of the CSEE, 2019, 39(17): 5144-5152, 5295.
[8]
秦浩宇,苏勋文,杨福宝,等. 双馈风机特征值分析的建模与模态分析[J]. 分布式能源2019, 4(3): 21-27.
QIN Haoyu, SU Xunwen, YANG Fubao, et al. Modeling and modal analysis of eigenvalues analysis of DFIG[J]. Distributed Energy, 2019, 4(3): 21-27.
[9]
孟宪梁,梁伟,杨志,等. 基于机器学习算法与SCADA系统的风电机组变桨系统变频器的故障预警方法研究[J]. 太阳能2021(2): 78-84.
MENG Xianliang, LIANG Wei, YANG Zhi, et al. Research on fault early warning method of wind turbine pitch system inverter based on machine learning algorithm and SCADA system[J]. Solar Energy, 2021(2): 78-84.
[10]
CARDOSO A, CRUZ S, FONSECA D. Inter-turn stator winding fault diagnosis in three-phase induction motors by Park's vector approach[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 595-598.
[11]
CRUZ S, CARDOSO A. Rotor cage fault diagnosis in three-phase induction motors by extended Park's vector approach[J]. Electric Machines & Power Systems, 2000, 28: 289-299.
[12]
KANDUKURI S T, SENANAYAKA J S L, HUYNH V K, et al. A two-stage fault detection and classification for electric pitch drives in offshore wind farms using support vector machine[C]//Proceedings of the 20th International Conference on Electrical Machines and Systems (ICEMS). Sydney, NSW, Australia: IEEE, 2017: 1-6.
[13]
赵春晖,张锦林,宿南,等. 用于高光谱变化检测的多径卷积网络算法[J]. 哈尔滨工程大学学报2020, 41(9): 1398-1404.
ZHAO Chunhui, ZHANG Jinlin, SU Nan, et al. Multipath convolutional neural network algorithm for hyperspectral change detection[J]. Journal of Harbin Engineering University, 2020, 41(9): 1398-1404.
[14]
王禹,韩爽,王其乐,等. 以变桨轴承延寿为目标的风电机组变桨策略优化研究[J]. 分布式能源2021, 6(2): 32-39.
WANG Yu, HAN Shuang, WANG Qile, et al. Optimization of wind turbine pitch strategy with pitch bearing life extension as objective[J]. Distributed Energy, 2021, 6(2): 32-39.
[15]
闫洪举. 基于深度学习的指数跟踪方法研究[J]. 统计与决策2021, 37(5): 143-147.
YAN Hongju. Research on index tracking based on deep learning[J]. Statistics and Decision, 2021, 37(5): 143-147.
[16]
WU Q, NANDI S. Fast single-turn sensitive stator interturn fault detection of induction machines based on positive-and negative-sequence third harmonic components of line currents[J]. IEEE Transactions on Industry Applications, 2010, 46(3): 974-983.
[17]
陶沙沙,郭顺生. 基于深度小波自动编码器和极限学习机的轴承故障诊断[J]. 科学技术与工程2020, 20(29): 12196-12203.
TAO Shasha, GUO Shunsheng. Fault diagnosis of bearing based on deep wavelet automatic encoder and extreme learning machine[J]. Science Technology and Engineering, 2020, 20(29): 12196-12203.
[18]
简献忠,韦进,王如志. 基于RPMDE-MKSVM的锂离子电池剩余使用寿命预测[J]. 控制工程2021, 28(4): 665-671.
JIAN Xianzhong, WEI Jin, WANG Ruzhi. Remaining useful life prediction of lithium-ion battery based on RPMDE-MKSVM[J]. Control Engineering of China, 2021, 28(4): 665-671.
[19]
王相宁,杨杰. 基于SSA-ARIMA-HPSO-SVM组合模型的汇率预测[J]. 统计与决策2020, 36(23): 134-138.
WANG Xiangning, YANG Jie. Exchange rate forecasting based on SSA-ARIMA-HPSO-SVM combination model[J]. Statistics and Decision, 2020, 36(23): 134-138.

基金

中国大唐集团新能源科学技术研究院有限公司科技项目(新能源监控与大数据中心多源融合远程专家诊断系统研发)

PDF(1166 KB)

Accesses

Citation

Detail

段落导航
相关文章

/