PDF(1166 KB)
PDF(1166 KB)
PDF(1166 KB)
基于支持向量机的风电机组变桨系统故障诊断
Fault Diagnosis of Wind Turbine Pitch System Based on Support Vector Machine
风电机组变桨系统是风电机组发生故障最频繁的部件之一,对其故障类型的精确诊断能够提高风电机组维护计划的效率。针对异步电机和行星齿轮箱的各种故障类型,提出了一项以风电机组三相电流数据为基础的多分量故障诊断方法。该方法通过深度自动编码器从三相电流数据中提取特征向量,并采用支持向量机进行故障分类。上述方法以风电机组变桨驱动器为例进行验证,实验结果表明在变负载和变转速环境下,上述方法能够实现对风电机组变桨系统故障类型的准确识别和诊断。
The rotor system of wind turbine is the most fragile parts of wind turbine, and accurate diagnosis of its fault categories can improve the effectiveness of wind turbine maintenance. A multi-component fault diagnosis method based on the three-phase currents data of wind turbine was proposed for various fault categories of induction motor and planetary gearbox. The method extracted feature vectors from three-phase currents data by deep auto-encoder and used support vector machine for fault classification. The above method was verified by an example of a rotor driver of wind turbine. The experimental results show that the method can accurately identify and diagnose the fault categories of rotor driver under variable load and variable speed environment.
pitch system / three-phase current / deep auto-encoder / support vector machine
| [1] |
|
| [2] |
|
| [3] |
李辉,杨超,李学伟,等. 风机电动变桨系统状态特征参量挖掘及异常识别[J]. 中国电机工程学报,2014, 34(12): 1922-1930.
|
| [4] |
|
| [5] |
殷樾. 基于粒子群算法-最小二乘支持向量机的日前光伏功率预测[J]. 分布式能源,2021, 6(2): 68-74.
|
| [6] |
顾军民,陈思函,马永光. 基于RBF神经网络的风电机组变桨系统故障预警[J]. 电力科学与工程,2020, 36(12): 37-43.
|
| [7] |
王爽心,郭婷婷,李蒙. 风电机组变工况变桨系统异常状态在线识别[J]. 中国电机工程学报,2019, 39(17): 5144-5152, 5295.
|
| [8] |
秦浩宇,苏勋文,杨福宝,等. 双馈风机特征值分析的建模与模态分析[J]. 分布式能源,2019, 4(3): 21-27.
|
| [9] |
孟宪梁,梁伟,杨志,等. 基于机器学习算法与SCADA系统的风电机组变桨系统变频器的故障预警方法研究[J]. 太阳能,2021(2): 78-84.
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
赵春晖,张锦林,宿南,等. 用于高光谱变化检测的多径卷积网络算法[J]. 哈尔滨工程大学学报,2020, 41(9): 1398-1404.
|
| [14] |
王禹,韩爽,王其乐,等. 以变桨轴承延寿为目标的风电机组变桨策略优化研究[J]. 分布式能源,2021, 6(2): 32-39.
|
| [15] |
闫洪举. 基于深度学习的指数跟踪方法研究[J]. 统计与决策,2021, 37(5): 143-147.
|
| [16] |
|
| [17] |
陶沙沙,郭顺生. 基于深度小波自动编码器和极限学习机的轴承故障诊断[J]. 科学技术与工程,2020, 20(29): 12196-12203.
|
| [18] |
简献忠,韦进,王如志. 基于RPMDE-MKSVM的锂离子电池剩余使用寿命预测[J]. 控制工程,2021, 28(4): 665-671.
|
| [19] |
王相宁,杨杰. 基于SSA-ARIMA-HPSO-SVM组合模型的汇率预测[J]. 统计与决策,2020, 36(23): 134-138.
|
/
| 〈 |
|
〉 |