风力发电机组塔架减振控制策略设计

兰杰, 林淑, 付斌, 岳伟

分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 55-62.

PDF(2961 KB)
PDF(2961 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (3) : 55-62. DOI: 10.16513/j.2096-2185.DE.2106522
应用技术

风力发电机组塔架减振控制策略设计

作者信息 +

Wind Turbine Tower Vibration Reduction Control Strategy Design

Author information +
文章历史 +

摘要

大型变速变桨风力发电机组塔架减振控制对延长风电机组整机运行寿命和保障机组安全稳定运行具有十分重要意义,为此提出一种塔架阻尼器反馈控制减振方法。在对塔架受力分析及建模的基础上,建立了塔架系统的运动方程,并对塔架振动原因进行分析,得到引起振动的重要因素,通过设计塔架阻尼器反馈控制来抑制塔架振动。以某国产2 MW机组为例,通过仿真验证可知,此方法能够增加塔架一阶振动模态的阻尼,保障机组获得足够的稳定裕量,变桨距执行机构所受疲劳载荷减小,有效保障机组在额定风速以上发电时,塔架顶部的振动位移减小、塔底载荷降低,在一定程度上提高了机组寿命。

Abstract

For a large variable speed variable pitch (VSVP) wind turbine, tower damping control is of great significance for extending the operating life and ensuring stable operation of the wind turbine. For this purpose, a feedback control method for damping of tower damper was designed. Based on the analysis and modeling of the tower's forces, the motion equation of the tower system was established, and the reason for the tower vibration was analyzed to obtain the important factors that cause the vibration. The feedback control of the tower damper was designed to suppress the tower vibration. Taking 2 MW wind turbine as an example, the simulation results show that this method can increase the damping of the tower's first-order vibration mode, ensure that the wind turbine has enough stability margin, and reduce the fatigue load of the variable pitch actuator. When the wind turbine is operating above the rated wind speed, the vibration displacement of the tower top and the tower bottom load is effectively reduced, then the life of wind turbine is increased.

关键词

风力发电 / 振动 / 风机塔架 / 阻尼器反馈控制 / 模态分析

Key words

wind turbine / vibration / turbine tower / damper feedback control / modal analysis

引用本文

导出引用
兰杰, 林淑, 付斌, . 风力发电机组塔架减振控制策略设计[J]. 分布式能源. 2021, 6(3): 55-62 https://doi.org/10.16513/j.2096-2185.DE.2106522
Jie LAN, Shu LIN, Bin FU, et al. Wind Turbine Tower Vibration Reduction Control Strategy Design[J]. Distributed Energy Resources. 2021, 6(3): 55-62 https://doi.org/10.16513/j.2096-2185.DE.2106522
中图分类号: TK83   

参考文献

[1]
刘雄,张宪民,陈严,等. 水平轴风力机结构动力响应分析[J]. 太阳能学报2009, 30(6): 804-809.
LIU Xiong, ZHANG Xianmin, CHEN Yan, et al. Structure dynamic response analysis of horizontal axis wind turbines[J]. Acta Energiae Solaris Sinica, 2009, 30(6): 804-809.
[2]
李宗福. 风力机塔架结构动力学问题讨论及分析程序的研制[D]. 哈尔滨:哈尔滨工业大学,2007.
LI Zongfu. Discussion of wind turbine tower dynamic problems and compose analyzing program[D]. Harbin: Harbin Institute of Technology, 2007.
[3]
刘桦. 风电机组系统动力学模型及关键零部件优化研究[D]. 重庆:重庆大学,2009.
LIU Hua. Study on systematic dynamic model and key part optimization analysis for wind turbine [D]. Chongqing: Chongqing University, 2009.
[4]
廖明夫,GASCH R, TWELE J. 风力发电技术研究[M]. 西安:西北工业大学出版社,2009: 171-200.
LIAO Mingfu, GASCH R, TWELE J. Wind power technology[M]. Xi'an: Northwestern Polytechnical University Press, 2009: 171-200.
[5]
刘皓明,唐俏俏,苏媛媛,等. 大型风电机组主动减振电气控制方法综述[J]. 电力科学与技术学报2016, 31(3): 182-194.
LIU Haoming, TANG Qiaoqiao, SU Yuanyuan, et al. A survey on electrical control methods of large wind turbine active vibration reduction[J]. Journal of Eiectric Power Science and Technology, 2016, 31(3): 182-194.
[6]
刘皓明,赵敏,张占奎,等. 双馈风电机组的整体协调减振策略[J]. 广东电力2019, 32(1): 36-45.
LIU Haoming, ZHAO Min, ZHANG Zhankui, et al. Overall coordinated vibration reduction strategy of double-fed wind turbine[J]. Guangdong Electric Power, 2019, 32(1): 36-45.
[7]
宫兆宇. 调谐质量阻尼减振技术在风力发电机塔架中的研究与应用[D]. 内蒙古:内蒙古科技大学,2013.
GONG Zhaoyu. The research and application of tuned mass damper technology in wind turbine tower[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2013.
[8]
林益帆. 基于调谐质量阻尼器的漂浮式风力机结构振动控制研究[D]. 重庆:重庆大学,2019.
LIN Yifan. Research on vibration control of floating of wind turbine structure based on tuned mass damper[D]. Chongqing: Chongqing University, 2019.
[9]
陈俊岭,阳荣昌. 滚球阻尼器在风力发电塔架中的振动控制[J]. 同济大学学报(自然科学版), 2013, 41(8): 1145-1150.
CHEN Junling, YANG Rongchang. Vibration control of tuned rolling-ball damper in wind turbines[J]. Jouranl of Tongji University(Natural Science), 2013, 41(8): 1145-1150.
[10]
COLLINS R, BASU B, BRODERICK B M. Optimal design of multi-tuned mass damper(MTMDS) for wind turbine towers using SSA[C]//Proceedings of the SECED Young Engineers Conference, Bath, 2005.
[11]
胡伟辉,林胜,秦中正,等. 大功率风力发电机组齿轮箱减振支撑的结构特点与应用[J]. 机械2010, 36(4): 74-77.
HU Weihui, LIN Sheng, QIN Zhongzheng, et al. The structure and application of gearbox suspension in high-power wind turbine [J]. Machinery, 2010, 36(4): 74-77.
[12]
同济大学. 阻尼减振装置及使用该装置的风力发电高塔:CN102146975[P]. 2011-08-10.
[13]
EKELUND T. Yaw control for reduction of structural dynamic loads in wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 241-262.
[14]
肖帅,杨耕,耿华. 抑制载荷的大型风电机组滑模变桨距控制[J]. 电工技术学报2013, 28(7): 145-150.
XIAO Shuai, YANG Geng, GENG Hua. Sliding-mode pitch control strategy for large wind turbines to reduce loads[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 145-150.
[15]
陶学军,卢晓光. 基于控制方法的风机塔架减振研究[J]. 电力科学与技术学报2014, 31(3): 325-329.
TAO Xuejun, LU Xiaoguang. Study of wind turbine tower vibration reduction based on control method[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(3): 325-329.
[16]
林志明,莫尔兵,宋聚众,等. 高原型风力发电机组的变桨控制[J]. 东方汽轮机2015, 139(3): 33-40.
LIN Zhiming, MO Erbing, SONG Juzhong, et al. Pitch control of plateau type variable speed variable pitch wind turbine[J]. Dongfang Turbine, 2015, 139(3): 33-40.
[17]
吴尧,高志鹰,汪建文,等. 水平轴风力机塔架的频率和振型特性实验研究[J]. 可再生能源2021, 39(1): 50-55.
WU Yao, GAO Zhiying, WANG Jianwen, et al. Experimental study on frequency and vibration mode characteristics of horizontal axis wind turbine tower[J]. Renewable Energy Resources, 2021, 39(1): 50-55.
[18]
何显富,卢霞,杨跃进,等. 风力机设计、制造与运行[M]. 北京:化学工业出版社,2009: 224-225.
HE Xianfu, LU Xia, YANG Yuejin, et al. Design, manufacture and operation of wind turbines[M]. Beijing: Chemical Industry Press Co., Ltd., 2009: 224-225.
[19]
高淑英,沈火明. 振动力学[M]. 北京:中国铁道出版社,2011: 9-30.
GAO Shuying, SHEN Huoming. Vibration mechanics [M]. Beijing: China Railway Publishing House Co., Ltd., 2011: 9-30.
[20]
王大为,陶学军,卢晓光. 基于柔性叶片模型的独立变桨减振控制[J]. 电力系统保护与控制2012, 40(16): 111-115.
WANG Dawei, TAO Xuejun, LU Xiaoguang. Load shedding control for independent pitch based on flexible blade model [J]. Power System Protection and Control, 2012, 40(16): 111-115.
[21]
BOSSANYI E A. GH bladed theory manual [R]. England: GH & Partners Ltd., 2009.

基金

国家重点研发计划项目(SQ2019YFB150160)

PDF(2961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/