可再生能源发电制氢系统仿真软件开发

卓俊威, 沈小军

分布式能源 ›› 2021, Vol. 6 ›› Issue (4) : 47-55.

PDF(6015 KB)
PDF(6015 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (4) : 47-55. DOI: 10.16513/j.2096-2185.DE.2106530
“氢能与可再生能源系统集成控制技术”专题

可再生能源发电制氢系统仿真软件开发

作者信息 +

Development of Simulation Software for Hydrogen Production System Based on Renewable Energy Generation

Author information +
文章历史 +

摘要

设计并开发了一款集电气稳定性分析、经济可行性分析于一体的可再生能源发电制氢系统综合仿真软件,从快速建模、多维仿真、并行提速等多个角度设计软件功能,旨在为研究人员提供快速、全面、低门槛的可再生能源发电制氢系统仿真工具。基于MVC模式设计软件架构,分别在模型层、视图层和控制层进行开发;设计通用接口框架,以PSCAD为例开发应用接口,借助PSCAD进行电气仿真;基于模型复用思想开发电气模型库,缩小用户建模成本;基于成本效益分析法搭建全生命周期经济模型;基于PyQt5开发图形化操作界面。此外,还引入多套参数并行方法提高仿真速度。算例分析表明,该软件电气仿真能有效模拟系统特性,相较传统仿真方法显著减少了建模时间和仿真运行时间;经济仿真结果能有效评估系统经济性,为容量配置优化提供有力支持。

Abstract

A comprehensive simulation software for hydrogen production system based on renewable energy generation is designed and developed, which integrates electrical stability analysis and economic feasibility analysis. The software functions are designed from the perspectives of fast modeling, multi-dimensional simulation, parallel speed-up, etc., aiming to provide researchers with a fast, comprehensive and low threshold simulation tool for renewable energy-based hydrogen production system. The software architecture is designed based on MVC pattern, which is developed in model layer, view layer and control layer respectively. The general interface framework is designed, and the application interface is developed with PSCAD as an example. Based on the idea of model reuse, the electrical model library is developed to reduce the cost of user modeling. Based on the cost-benefit analysis, the whole life cycle economic model is built. The graphical operation interface is developed based on PyQt5. In addition, a multi parameter parallel method is introduced to improve the simulation speed. The simulation results show that the software can effectively simulate the system characteristics and significantly reduce the modeling time and simulation running time compared with the traditional simulation methods; Economic simulation results effectively evaluate the system economy and provide strong support for capacity allocation optimization.

关键词

可再生能源 / 制氢 / 综合仿真 / 模型复用 / 应用接口 / 可视化 / 并行仿真

Key words

renewable energy / hydrogen production / comprehensive simulation / model reuse / application interface / visualization / parallel simulation

引用本文

导出引用
卓俊威, 沈小军. 可再生能源发电制氢系统仿真软件开发[J]. 分布式能源. 2021, 6(4): 47-55 https://doi.org/10.16513/j.2096-2185.DE.2106530
Junwei ZHUO, Xiaojun SHEN. Development of Simulation Software for Hydrogen Production System Based on Renewable Energy Generation[J]. Distributed Energy Resources. 2021, 6(4): 47-55 https://doi.org/10.16513/j.2096-2185.DE.2106530
中图分类号: TK91   

参考文献

[1]
王灿,张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理2020, 12(6): 58-64.
WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality cision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64.
[2]
帅智康,邹福筱,涂春鸣,等. 微网暂态稳定性研究[J]. 电力系统自动化2015, 39(16): 151-159.
SHUAI Zhikang, ZOU Fuxiao, TU Chunming, et al. Review on transient stability of microgrid[J]. Automation of Electric Power Systems, 2015, 39(16): 151-159.
[3]
孙彩,李奇,邱宜彬,等. 余电上网/制氢方式下微电网系统全生命周期经济性评估[J/OL]. 电网技术2021: 1-12[2021-06-19]. https://doi.org/10.13335/j.1000-3673.pst.2021.0090.
SUN Cai, LI Qi, QIU Yibin, et al. Economic evaluation of whole life cycle of the micro-grid system under the mode of residual power connection/hydrogen production[J/OL]. Power System Technology, 2021: 1-12[2021-06-19]. https://doi.org/10.13335/j.1000-3673.pst.2021.0090.
[4]
贾成真,王灵梅,孟恩隆,等. 风光氢耦合发电系统的容量优化配置及日前优化调度[J]. 中国电力2020, 53(10): 80-87.
JIA Chengzhen, WANG Lingmei, MENG Enlong, et al. Optimal capacity configuration and day-ahead scheduling of wind-solar-hydrogen coupled power generation system[J]. Electric Power, 2020, 53(10): 80-87.
[5]
李国军,袁铁江,孙谊媊,等. 风电-氢储能与煤化工多能耦合系统全寿命周期经济性评估[J]. 电工技术学报2017, 32(21): 132-142.
LI Guojun, YUAN Tiejiang, SUN Yiqian, et al. Full life cycle economic evaluation of wind power-hydrogen energy storage and coal chemical multi-functional coupling system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 132-142.
[6]
SINHA S, CHANDEL S S. Review of software tools for hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2014(32): 192-205.
[7]
徐政,李宁璨,肖晃庆,等. 大规模交直流电力系统并行计算数字仿真综述[J]. 电力建设2016, 37(2): 1-9.
XU Zheng, LI Ningcan, XIAO Huangqing, et al. A review of parallel computing digital simulation of large-scale AC/DC power system. electric power construction[J]. Electric Power Construction, 2016, 37(2): 1-9.
[8]
曹斌,王立强,赵永飞,等. 基于PSCAD/EMTDC的大规模新能源并网电磁暂态并行仿真[J]. 中国电力2020, 53(11): 154-161.
CAO Bin, WANG Liqiang, ZHAO Yongfei, et al. Electromagnetic transient parallel simulation of large-scale new energy grid connection based on PSCAD/EMTDC[J]. Electric Power, 2020, 53(11): 154-161.
[9]
李高望,陈锐智,陈艳波. 考虑网络划分优化的交直流系统并行电磁暂态仿真研究[J]. 电力系统保护与控制2021, 49(4): 72-80.
LI Gaowang, CHEN Ruizhi, CHEN Yanbo. Research on parallel electromagnetic transient simulation of an AC-DC system considering optimization of network division[J]. Power System Protection and Control, 2021, 49(4): 72-80.
[10]
任中方,张华,闫明松,等. MVC模式研究的综述[J]. 计算机应用研究2004(10): 1-4, 8.
REN Zhongfang, ZHANG Hua, YAN Mingsong, et al. Overview of the research in model-view-controller pattern[J]. Application Research of Computers, 2004(10): 1-4, 8.
[11]
HUANG Q, VITTAL V. Open HybridSim: An open source tool for EMT and phasor domain hybrid simulation[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA: IEEE, 2016: 1-5.
[12]
Manitoba Hydro International Ltd. Automation library 1.2.4 documentation[EB/OL]. [2021-05-06].
[13]
宋雨倩. 直驱永磁风力发电机组建模与控制策略研究[D]. 北京:华北电力大学,2013.
SONG Yuqian. Research on modeling and control strategy for the direct-driven permanent-magnet generator[D]. Beijing: North China Electric Power University, 2013.
[14]
苏建徽,余世杰,赵为,等. 硅太阳电池工程用数学模型[J]. 太阳能学报2001(4): 409-412.
SU Jianhui, YU Shijie, ZHAO Wei, et al. Investigation on engineering analytical model of silicon solar cells[J]. Acta Energiae Solaris Sinica, 2001, 22(4): 409-412.
[15]
LI S H, KE B. Study of battery modeling using mathematical and circuit oriented approaches[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA: IEEE, 2011: 1-8.
[16]
韩晓娟,王丽娜,高僮,等. 基于成本和效益分析的并网光储微网系统电源规划[J]. 电工技术学报2016, 31(14): 31-39+66.
HAN Xiaojuan, WANG Lina, GAO Tong, et al. Generation planning of grid-connected micro-grid system with PV and batteries storage system based on cost and benefit analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 31-39+66.
[17]
Riverbank Computing Limited. PyQt5 reference guide[EB/OL]. [2021-02-11].
[18]
郭振,乐全明,郭力,等. 交直流混合微电网中直流母线电压纹波抑制方法[J]. 电网技术2017, 41(9): 2896-2904.
GUO Zhen, YUE Quanming, GUO Li, et al. Control method of DC bus voltage ripple mitigation in hybrid AC/DC microgrids[J]. Power System Technology, 2017, 41(9): 2896-2904.
[19]
韩舒淇,李文鑫,陈冲,等. 基于风电制氢与超级电容器混合储能的可控直驱永磁风电机组建模与控制[J]. 广东电力2019, 32(5): 1-12.
HAN Shuqi, LI Wenxin, CHEN Chong, et al. Modeling and control of controllable D-PMSG based on hybrid energy storage of wind power hydrogen production and supercapacitor[J]. Guangdong Electric Power, 2019, 32(5): 1-12.

基金

国家重点研发计划项目(2018YFB1503100)

PDF(6015 KB)

Accesses

Citation

Detail

段落导航
相关文章

/