海上风电机组视情维护与备件管理集成优化

张路娜, 唐宏芬, 张舒翔, 尹男, 赵兴安

分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 44-50.

PDF(1460 KB)
PDF(1460 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 44-50. DOI: 10.16513/j.2096-2185.DE.2106532
海上风电专题

海上风电机组视情维护与备件管理集成优化

作者信息 +

Integrated Optimization of Condition-Based Maintenance and Spare Parts Management for Offshore Wind Turbines

Author information +
文章历史 +

摘要

海上风电场运行环境恶劣、维修船只出海成本高,因而海上风电机组的维修通常集中进行,这对于海上风电机组部件的备件库存管理提出了更高的要求。为此,提出了一种综合考虑部件退化状态的视情维护与备件库存管理的集成策略,显著减少了风电机组失效时长,降低了停机损失。以海上风电机组的巡检周期、部件的维修阈值与备件管理的再订货点、订货批量为联合决策变量,以系统的成本率为目标函数建立数学模型。针对模型中的随机变量和维护与备件库存管理的耦合关系导致的高度复杂性,设计蒙特卡洛仿真算法估计其目标函数值。最后通过仿真实验进行灵敏度分析,验证了本文所提模型的有效性。

Abstract

Maintenance activities of offshore wind turbines are usually centralized due to the severe weather and expensive sailing cost, which puts forward higher requirements for the spare parts inventory management of offshore wind turbine components. Based on this problem, this paper presents an integrated model for condition-based maintenance and spare parts management. It significantly reduces the failure time of the wind turbine and reduces the shutdown loss. Taking the inspection cycle of offshore wind turbine, the maintenance threshold of components, the reorder point and the order quantity of spare parts as the joint decision variables, a mathematical model with the objective of minimization of cost rate is established. Due to the high complexity resulting from random variables as well as coupling relationship between maintenance and spare parts management, Monte Carlo simulation algorithm is designed to estimate the objective value of the model. Finally, the simulation based sensitive analysis experiment shows the effectiveness of the proposed model and algorithm.

关键词

海上风电机组 / 视情维护 / 备件管理 / 集成优化 / 蒙特卡洛仿真

Key words

offshore wind turbine / condition-based maintenance / spare parts management / integrated optimization / Monte Carlo simulation

引用本文

导出引用
张路娜, 唐宏芬, 张舒翔, . 海上风电机组视情维护与备件管理集成优化[J]. 分布式能源. 2021, 6(5): 44-50 https://doi.org/10.16513/j.2096-2185.DE.2106532
Luna ZHANG, Hongfen TANG, Shuxiang ZHANG, et al. Integrated Optimization of Condition-Based Maintenance and Spare Parts Management for Offshore Wind Turbines[J]. Distributed Energy Resources. 2021, 6(5): 44-50 https://doi.org/10.16513/j.2096-2185.DE.2106532
中图分类号: TK83   

参考文献

[1]
SHENG Z, YU W, ZHOU Y, et al. Roles of wind and solar energy in China's power sector: Implications of intermittency constraints[J]. Applied Energy, 2018, 213: 22-30.
[2]
CUI M, ZHANG J, FENG C, et al. Characterizing and analyzing ramping events in wind power, solar power, load, and netload[J]. Renewable Energy, 2017, 111: 227-244.
[3]
PRASAD A A, TAYLOR R A, KAY M. Assessment of solar and wind resource synergy in Australia[J]. Applied Energy, 2017, 190: 354-367.
[4]
HAN S, ZHANG L, LIU Y, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio[J]. Applied Energy, 2019, 236: 973-984.
[5]
HAN S, ZHANG L, LIU Y, et al. A data sample division method for wind power prediction based on China's 24 solar terms[J]. International Transactions on Electrical Energy Systems, 2020, 30(7): 12342-12366.
[6]
刘桢,俞炅旻,黄德财,等. 海上风电发展研究[J]. 船舶工程2020, 42(8): 20-25.
[7]
ZHOU P, YIN P T. An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 1-9.
[8]
卢启付,余超耘,王红星,等. 中国海上风电检测与认证标准体系研究[J]. 广东电力2020, 30(3): 1-6.
LU Qifu, YU Chaoyun, WANG Hongxing, et al. Offshore wind power testing and certification standard system in China[J]. Guangdong Electric Power, 2020, 30(3): 1-6.
[9]
LIU X, LI J R, AL-KHALIFA K N, et al. Condition-based maintenance for continuously monitored degrading systems with multiple failure modes[J]. IIE Transactions, 2013, 45(4): 422-435.
[10]
吕伟,谈宏志,金礼伟,等. 海上风场运维调度问题的研究[J]. 机械制造2017, 55(4): 88-90, 94.
[11]
郑小霞,赵华,刘璐洁. 考虑可及性的海上风机综合维护策略[J]. 电网技术2014, 38(11): 3030-3036.
ZHENG Xiaoxia, ZHAO Hua, LIU Lujie, et al. A combined maintenance strategy for offshore wind turbine considering accessibility[J]. Power System Technology, 2014, 38(11): 3030-3036.
[12]
赵洪山,张健平,程亮亮等. 考虑不完全维修的风电机组状态-机会维修策略[J]. 中国电机工程学报2016, 36(3): 701-708.
ZHAO Hongshan, ZHANG Jianping, CHENG Liangliang, et al. A condition based opportunistic maintenance strategy for wind turbine under imperfect maintenance[J]. Proceedings of the CSEE, 2016, 36(3): 701-708.
[13]
ALBERT H S, EVRIM U, IRIS F A V. Mixed integer programming models for planning maintenance at offshore wind farms under uncertainty[J]. Transportation Research Part C: Emerging Technologies, 2020, 112: 180-202.
[14]
ZHANG B, ZHANG Z. A two-stage model for asynchronously scheduling offshore wind farm maintenance tasks and power productions[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 1-11.
[15]
KANG J, SOARES C G. An opportunistic maintenance policy for offshore wind farms[J]. Ocean Engineering, 2020, 216:1-9.
[16]
SONG S, LI Q, FELDER F A, et al. Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance[J]. Computers & Industrial Engineering, 2018, 120: 288-297.

基金

中国大唐集团新能源科学技术研究院科技项目(新能源监控与大数据中心多源融合远程专家诊断系统研发)()

PDF(1460 KB)

Accesses

Citation

Detail

段落导航
相关文章

/