海洋风电机组防腐蚀技术研究进展

李理, 范玉鹏, 常志明, 姜浩杰

分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 51-58.

PDF(1806 KB)
PDF(1806 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 51-58. DOI: 10.16513/j.2096-2185.DE.2106535
海上风电专题

海洋风电机组防腐蚀技术研究进展

作者信息 +

Research Progress of Anti-Corrosion Technology for Offshore Wind Turbines

Author information +
文章历史 +

摘要

海上风电作为一种绿色能源,已经成为风电开发的热点领域,但是,由于所处的海洋环境复杂,海上风电机组防腐工作面临着巨大挑战。介绍了我国东南沿海地区海洋腐蚀环境的特点,针对海上风电机组所处的腐蚀环境情况,把风机结构进行了区域的划分,沿垂直方向可将所处的海洋环境分为5个腐蚀区域,即大气区、飞溅区、潮差区、全浸区及海泥区。通过电化学及相关理论,阐述了多种环境状态下的风机不同结构间的腐蚀机理,并归纳了常规的防腐蚀技术,包括涂层防腐、阴极保护防腐、复层包覆防腐等方法。为确保海上风电机组的安全平稳运行,对设备的防腐措施提出了建议,以期对海上风电机组的大规模发展提供参考。

Abstract

As a kind of green energy, offshore wind power has become a hot field of wind power development. However, due to the complex marine environment, the anticorrosion work of offshore wind turbines faces great challenges. The characteristics of marine corrosive environment in southeast coastal area of China were introduced. According to the corrosive environment of offshore wind turbine, the structure of wind turbine was divided into five corrosion zones along the vertical direction, namely atmospheric zone, splash zone, tidal range zone, full immersion zone and sea mud zone. Based on electrochemistry and related theories, the corrosion mechanism between different structures of fan under various environmental conditions is described, and the conventional anti-corrosion technologies are summarized, including coating anticorrosion, cathodic protection anticorrosion, and multi-layer coating anticorrosion. In order to ensure the safe and smooth operation of the offshore wind turbine, some suggestions on the anti-corrosion measures of the equipment were put forward in order to provide reference for the large-scale development of the offshore wind turbine.

关键词

海上风电 / 气候特点 / 腐蚀分区 / 腐蚀机理 / 防腐技术

Key words

offshore wind power / climatic characteristics / corrosion partition / corrosion mechanism / anticorrosion technology

引用本文

导出引用
李理, 范玉鹏, 常志明, . 海洋风电机组防腐蚀技术研究进展[J]. 分布式能源. 2021, 6(5): 51-58 https://doi.org/10.16513/j.2096-2185.DE.2106535
Li LI, Yupeng FAN, Zhiming CHANG, et al. Research Progress of Anti-Corrosion Technology for Offshore Wind Turbines[J]. Distributed Energy Resources. 2021, 6(5): 51-58 https://doi.org/10.16513/j.2096-2185.DE.2106535
中图分类号: TK83   

参考文献

[1]
易侃,张子良,张皓,等. 海上风能资源评估数值模拟技术现状及发展趋势[J]. 分布式能源2021, 6(1): 1-6.
YI Kan, ZHANG Ziliang, ZHANG Hao, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1): 1-6.
[2]
LIU Yan, GU Yali, WANG Jingmin. Influence model of wind power capacity in load response system under smart grid environment[J]. Journal of Intelligent and Fuzzy Systems, 2020, 39(1): 1-8.
[3]
汪大洋,刘宗烨,李沛,等. 基于模块化多电平矩阵换流器的海上风电分频系统经济性分析[J]. 分布式能源2018, 3(2): 16-22.
WANG Dayang, LIU Zongye, LI Pei, et al. Economic analysis of fractional frequency transmission system for offshore wind farm based on modular multilevel matrix convertert[J]. Distributed Energy, 2018, 3(2): 16-22.
[4]
黄方能,张红丽,马骞,等. 受端电网特高压直流系统与海上风电交互影响及评价指标[J]. 广东电力2019, 32(3): 96-103.
HUANG Fangneng, ZHANG Hongli, MA Qian, et al. Interactive effects between HVDC of receiving-end power grid and offshore wind power and evaluation index[J]. Guangdong Electric Power, 2019, 32(3): 96-103.
[5]
ZHANG Jin, ZHANG Jiwei, CAI Ling, et al. Energy performance of wind power in China: a comparison among inland, coastal and offshore wind farms[J]. Journal of Cleaner Production, 2017, 143(1): 836-842.
[6]
余浩,肖彭瑶,林勇,等. 大规模海上风电高电压穿越研究进展与展望[J]. 智慧电力2020, 48(3): 30-38.
YU Hao, XIAO Pengyao, LIN Yong, et al. Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J]. Smart Power, 2020, 48(3): 30-38.
[7]
MEHMET B, ABDULKADIR Y, ERDOGAN S. Offshore wind power development in Europe and its comparison with onshore counterpart[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 905-915.
[8]
SAMIRA, KEIVANPOUR, AMAR, et al. The sustainable worldwide offshore wind energy potential: a systematic review[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 65902-65902.
[9]
刘晓辉,高人杰,薛宇. 浮式风力发电机组现状及发展趋势综述[J]. 分布式能源2020, 5(3): 39-46.
LIU Xiaohui, GAO Renjie, XUE Yu. Current situation and future development trend of floating offshore wind turbines[J]. Distributed Energy, 2020, 5(3): 39-46.
[10]
李战强. 海上风机钢管桩基础耐腐蚀性研究[D]. 重庆:重庆交通大学,2014.
LI Zhanqiang. Research on anti-corrosion of steel pipe pile of offshore wind turbines[D]. Chongqing: Chongqing Jiaotong University, 2014.
[11]
薛宇,刘燕. 海上湿气对风力机翼型及叶片气动性能影响研究[J]. 分布式能源2016, 1(2): 21-27.
XUE Yu, LIU Yan. Influence of high humidity on the aerodynamic performance of offshore wind turbine airfoil/blade[J]. Distributed Energy, 2016, 1(2): 21-27.
[12]
WU Jie, WANG Zhixin, WANG Guoqiang. The key technologies and development of offshore wind farm in China[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 453-462.
[13]
ZHU Xiangrong, HUANG Guiqiao, LIN Leyun, et al. Long term corrosion characteristics of metallic materials in marine environments[J]. Corrosion Engineering Science and Tech-nology, 2008, 43(4): 328-334.
[14]
AGHAJANI A. In situ corrosion protection of oil risers and offshore piles[J]. Materials Performance, 2008, 47(4): 38-42.
[15]
程鹏. 东南沿海地区木构文物建筑的潮湿病害研究[D]. 哈尔滨:哈尔滨工业大学,2019.
CHENG Peng. Research on the humid diseases of timber relic buildings in the southeast coastal area[D]. Harbin: Harbin Institute of Technology, 2019.
[16]
詹耀. 海上风电机组的防腐技术与应用[J]. 现代涂料与涂装2012, 15(2): 15-18.
ZHAN Yao. Anticorrosion technology and application of offshore wind turbines[J]. Modern Paint and Finishing, 2012, 15(2): 15-18.
[17]
郎东旭,王立秋,李勇. 石油平台海管立管腐蚀修复[J]. 涂料工业2019, 49(4): 75-79.
LANG Dongxu, WANG Liqiu, LI Yong. Corrosion repairing of offshore platform riser[J]. Paint and Coatings Industry, 2019, 49(4): 75-79.
[18]
姚忠,孙绪东. 海上风机钢结构基础防腐设计[J]. 钢结构2012, 27(10): 77-79.
YAO Zhong, SUN Xudong. Anti-corrosion design of steel structure foundation of offshore wind turbines[J]. Steel Construction, 2012, 27(10): 77-79.
[19]
詹耀,刘瑶,于国利. 我国不同区域风电场的腐蚀环境及防腐技术分析[J]. 上海涂料2013, 51(10): 43-48.
ZHAN Yao, LIU Yao, YU Guoli. Analysis of the corrosion environment and corrosion protection technology of wind farm in different regions of China[J]. Shanghai Coatings, 2013, 51(10): 43-48.
[20]
LYE R E. Splash zone protection on offshore platforms: a norwegian operator’s experience[J]. Materials Performance, 2001, 40(4): 40-45.
[21]
韩恩厚,陈建敏,宿彦京,等. 海洋工程结构与船舶的腐蚀防护:现状与趋势[J]. 中国材料进展2014, 33(2): 65-76, 113.
HAN Enhou, CHEN Jianmin, SU Yanjing, et al. Corrosion protection techniques of marine engineering structure and ship equipment: current status and future trend[J]. Materials China, 2014, 33(2): 65-76, 113.
[22]
MOMBER A W, MARQUARDT T. Protective coatings for offshore wind energy devices (OWEAs): A review[J]. Journal of Coatings Technology and Research, 2017, 15(1): 13-40.
[23]
王培. 海洋钢结构中的防腐控制[J]. 中国造船2008, 10(49): 177-181.
WANG Pei. Anti-corrosion control in the offshore steel structure[J]. Shipbuilding of China, 2008, 10(49): 177-181.
[24]
侯保荣. 海洋钢结构浪花飞溅区腐蚀控制技术[M]. 北京:科学出版社,2011: 10-100.
HOU Baorong. Corrosion control technology in the splash zone of marine steel structure[M]. Beijing: Science Press, 2011: 10-100.
[25]
周建龙,李晓刚,程学群,等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术2020, 22(1): 47-51.
ZHOU Jianlong, LI Xiaogang, CHENG Xuequn, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science and Protection Technology, 2020, 22(1): 47-51.
[26]
于林. 硫酸盐还原菌生物膜电活性及腐蚀机理研究[D]. 青岛:中国科学院海洋研究所,2011.
YU Lin. The electro-active characteristics of sulfate-reducing bacteria and its influence on the anaerobic corrosion of carbon steels[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.
[27]
刘新. 海上风电场的防腐蚀涂装[J]. 中国涂料2011, 24(11): 17-25.
LIU Xin. Anticorrosive coating of offshore wind farm[J]. China Coatings, 2011, 24(11): 17-25.
[28]
刘啸波,胡颖. 海上风机基础选择策略[J]. 中国船检2010, 9(9): 56-58.
LIU Xiaobo, HU Ying. Basic selection strategy for offshore wind turbines[J]. China Ship Survey, 2010, 9(9): 56-58.
[29]
赵志峰. 海上风电机组基础全寿命疲劳分析[D]. 大连:大连理工大学,2016.
ZHAO Zhifeng. Thefatigue analysis of offshore wind turbine foundation in service[D]. Dalian: Dalian University of Technology, 2016.
[30]
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅲ):海水飞溅区16年暴露试验总结[J]. 腐蚀与防护2003, 24(2): 47-50.
HUANG Guiqiao. Corrosion of aluminium alloys in marine environment(Ⅲ): a summary of 16 years exposure testing in splash zone[J]. Corrosion and Protection, 2003, 24(2): 47-50.
[31]
刘欣,周宇,李志美,等. 接地材料在模拟溶液与现场埋片的腐蚀及相关性研究[J]. 智慧电力2020, 48(12): 104-108, 115.
LIU Xin, ZHOU Yu, LI Zhimei, et al. Research on corrosion and correlation of grounding materials in simulated solution and metal specimens buried in underground[J]. Smart Power, 2020, 48(12): 104-108, 115
[32]
冯立超,贺毅强,乔斌,等. 金属及合金在海洋环境中的腐蚀与防护[J]. 热加工工艺2013, 42(24): 13-17.
FENG Lichao, HE Yiqiang, QIAO Bin, et al. Corrosion and protectionof metal and alloy in marine environment[J]. Hot Working Technology, 2013, 42(24): 13-17.
[33]
刘大杨,魏开金. 金属在南海海域腐蚀电位研究[J]. 腐蚀科学与防护技术1999, 11(6): 330-334.
LIU Dayang, WEI Kaijin. Corrosion potentials of metals in natural sea water of sorth China sea[J]. Corrosion Science and Protection Technology, 1999, 11(6): 330-334.
[34]
郭文涛. 罗巴鲁涂料公司发展战略研究[D]. 上海:上海交通大学,2013.
GUO Wentao. The research on development strategy of luobalu coating company[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[35]
刘宝,潘立,信会鹏,等. 水性金属防腐涂料的应用与研究[J]. 化学建材2009, 25(2): 1-3.
LIU Bao, PAN Li, XIN Huipeng, et al. Study and application of water-based anti-corrosion metallic coating[J]. Green Building, 2009, 25(2): 1-3.
[36]
任鹏禾,周宏明,许晓嫦,等. 石墨烯改性无铬达克罗涂层的组织及耐腐蚀性能[J]. 中国表面工程2018, 31(6): 73-80.
REN Penghe, ZHOU Hongming, XU Xiaochang, et al. Microstructure and corrosion resistance of graphene modified chromium-free dacromet coating[J]. China Surface Engineering, 2018, 31(6): 73-80.
[37]
肖齐洪. 石墨烯增强绿色达克罗涂层制备及防护机理研究[D]. 贵州:贵州大学,2019.
XIAO Qihong. Study on preparation and protection mechanism of graphene-enhanced green dacromet coating[D]. Guizhou: Guizhou University, 2019.
[38]
詹耀,钟本旺. 我国南方地区风电场的腐蚀成因及防腐涂装[J]. 上海涂料2015, 53(5): 34-37.
ZHAN Yao, ZHONG Benwang. The corrosion causes and anticorrosion coating of wind farm in Chinese south area[J]. Shanghai Coatings, 2015, 53(5): 34-37.
[39]
詹耀. 海上风电钢结构防腐及氟碳涂料应用[J]. 涂料技术与文摘2012, 33(10): 22-25, 28.
ZHAN Yao. Anticorrosion technology for steel structure of offshore wind power system and application of fluorocarbon coatings[J]. Coating and Protection, 2012, 33(10): 22-25, 28.
[40]
贾新杰. 水工金属结构埋件的长效防腐研究[D]. 郑州:华北水利水电大学,2019.
JIA Xinjie. Long-term anti-corrosion research on embedded parts of hydraulic metal structures[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.
[41]
孙雨丽. 城市燃气管道安全管理研究[D]. 邯郸:河北工程大学,2011.
SUN Yuli. Research on urban gas pipeline safety management[D]. Handan: Hebei University of Engineering, 2011.
[42]
HUGUS D, HARTT W H. Effect of velocity on current density for cathodically polarized steel in seawater[J]. Corrosion-Houston Tx-1999, 55(2): 115-127.
[43]
ROSSI S, BONORA P L, PASINETTI R, et al. Laboratory and field characterization of a new sacrificial anode for cathodic protection of offshore structures[J]. Corrosion-Houston Tx-1998, 54(12): 1018-1025.
[44]
江炎兰,曲亮生. 舰船的电化学腐蚀及其外加电流阴极保护法应用状况[J]. 材料保护2010, 43(2): 45-46, 80.
JIANG Yanlan, QU Liangsheng. Electrochemical corrosion of ships and the application status of impressed current cathodic protection[J]. Materials Protection, 2010, 43(2): 45-46, 80.
[45]
岳强,王俊男,韩洋洋,等. 外加电流法在海水冷却器防腐上的应用[J]. 化学工程师2018, 32(9): 77-79, 83.
YUE Qiang, WANG Junnan, HAN Yangyang, et al. Application of impressed current method in corrosion prevention of seawater cooler[J]. Chemical Engineer, 2018, 32(9): 77-79, 83.
[46]
陈晶晶. 海洋平台阴极保护实时监测与评估系统研究[D]. 大连:大连理工大学,2008.
CHEN Jingjing. Study on real-time monitoring and evaluation system for the cathodic protection status of offshore platform[D]. Dalian: Dalian University of Technology, 2008.
[47]
侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术[J]. 中国材料进展2014, 33(1): 26-31.
HOU Baorong. Anti-corrosion technology to steel structure in splash zone[J]. Materials China, 2014, 33(1): 26-31.
[48]
丁路遥. 螺栓紧固件用不粘性矿脂防蚀膏的研究[D]. 北京:机械科学研究总院,2014.
DING Luyao. Research on the non-sticky petrolatum anticorrosion grease applied to bolt fastener[D]. Beijing: China Academy of Machinery Science and Technology, 2014.
[49]
崔芳莹. 海水干湿交替条件下碳钢腐蚀行为及其缓蚀剂性能研究[D]. 重庆:重庆大学,2016.
CUI Fangying. Study on the corrosion behavior of mild steel and inhibition effect of inhibitors under wet-dry cyclic conditions[D]. Chongqing: Chongqing University, 2016.

PDF(1806 KB)

Accesses

Citation

Detail

段落导航
相关文章

/