考虑风电不确定性的含海上风电场电力系统优化调度策略研究

张晋华, 朱悦榕, 李旭强, 刘良雨

分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 33-43.

PDF(17025 KB)
PDF(17025 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (5) : 33-43. DOI: 10.16513/j.2096-2185.DE.2106547
海上风电专题

考虑风电不确定性的含海上风电场电力系统优化调度策略研究

作者信息 +

Optimization Scheduling Strategy of Offshore Wind Farm Power System Considering Wind Power Uncertainty

Author information +
文章历史 +

摘要

由于风电具有波动性和间歇性,当海上风电机组并网时,电力系统将会受到冲击,导致电网频率波动和运行控制的失调,因此需要安排其他发电机组来进行调节。在考虑海上风电机组不确定性的情况下,建立风火联合优化调度模型,以风电为主体,对电力系统优化调度策略进行研究。首先,用不同Copula函数对海上风电场功率进行拟合分析,选定t-Copula函数进行风电功率预测。在此基础上,建立了多目标的风火联合优化调度模型,将乌鸦搜索优化算法与粒子群优化算法进行收敛速度对比,选取乌鸦搜索优化算法对分析数据进行优化处理,制定全局优化调度方案。最后,算例验证了所提模型的有效性。

Abstract

Since wind power is volatile and intermittent, when offshore wind turbines are connected to the grid, the power system will be shocked, resulting in frequency fluctuations and dysregulation of the grid operation control, so other generating units need to be arranged for regulation. In this paper, considering the uncertainty of offshore wind turbines, a wind-fire joint optimal scheduling model is established to study the optimal scheduling strategy of the power system with wind power as the main body. First, different Copula functions are used to fit and analyze the offshore wind farm power, and the t-Copula function is selected for wind power prediction. On this basis, a multi-objective wind-fire joint optimal scheduling model is established, the convergence speed of the crow search optimization algorithm is compared with the particle swarm optimization algorithm, and the crow search optimization algorithm is selected to optimize the analyzed data and develop a global optimal scheduling scheme. Finally, the arithmetic example verifies the effectiveness of the proposed model.

关键词

风电不确定性 / Copula函数 / 乌鸦搜索优化算法 / 优化调度

Key words

wind power uncertainty / Copula function / raven search optimization algorithm / optimal scheduling

引用本文

导出引用
张晋华, 朱悦榕, 李旭强, . 考虑风电不确定性的含海上风电场电力系统优化调度策略研究[J]. 分布式能源. 2021, 6(5): 33-43 https://doi.org/10.16513/j.2096-2185.DE.2106547
Jinhua ZHANG, Yuerong ZHU, Xuqiang LI, et al. Optimization Scheduling Strategy of Offshore Wind Farm Power System Considering Wind Power Uncertainty[J]. Distributed Energy Resources. 2021, 6(5): 33-43 https://doi.org/10.16513/j.2096-2185.DE.2106547
中图分类号: TK81   

参考文献

[1]
PENG H, HU W, SOLTANI M, et al. Offshore wind farm layout design considering optimized power dispatch strategy[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 638-647.
[2]
MEI S, ZHANG D, WANG Y, et al. Robust optimization of static reserve planning with large-scale integration of wind power: A game theoretic approach[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 535-545.
[3]
PAZOUKI S, HAGHIFAM M R. Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty[J]. International Journal of Electrical Power & Energy Systems, 2016, 80: 219-239.
[4]
马彬,牛东晓. 风火打捆跨区域供给电采暖的经济性评估[J]. 智慧电力2020, 48(3): 89-95.
MA Bin, NIU Dongxiao. Economic evaluation of wind-thermal-bundled cross-regional power supply for electric heating[J]. Smart Power, 2020, 48(3): 89-95.
[5]
杨茂,代博祉,刘蕾. 风电功率概率预测研究综述[J]. 东北电力大学学报2020, 40(2): 1-6.
YANG Mao, DAI Bozhi, LIU Lei. A review of wind power probabilistic prediction[J]. Journal of Northeast Electric Power University, 2020, 40(2): 1-6.
[6]
LI Jinghua, FANG Jiakun, WEN Jinyu, et al. Optimal trade-off between regulation and wind curtailment in the economic dispatch problem[J]. CSEE Journal of Power and Energy Systems, 2015, 1(4): 37-45.
[7]
KHOSRAVI A, NAHAVANDI S, CREIGHTON D. Con-struction of optimal prediction intervals for load forecasting problems[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1496-1503.
[8]
He Y, Deng J, Li H. Short-term power load forecasting with deep belief network and copula models[C]//2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2017: 191-194.
[9]
TENG Q, WANG C, LIANG J, et al. Modeling the temporal correlation of ultra-short term wind power forecast error based on copula theory[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2017: 1-4.
[10]
段偲默,苗世洪,李力行,等. 计及预测误差动态相关性的多风电场联合出力不确定性模型[J]. 电力系统自动化2019, 43(22): 31-37.
DUAN Caimo, MIAO Shihong, LI Lixing, et al. Uncertainty model of combined output for multiple wind farms considering dynamic correlation of prediction errors[J]. Automation of Electric Power Systems, 2019, 43(22): 31-37.
[11]
金鑫城,杨秀媛. 基于失真数据降噪的数据预处理方法及其在风电功率预测中的应用[J]. 发电技术2020, 41(4): 447-451.
JIN Xincheng, YANG Xiuyuan. Data pre-processing method based on distorted data noise reduction and its application in wind power prediction[J]. Power Generation Technology, 2020, 41(4): 447-451.
[12]
YAO Q, HU Y, LUO Z. Optimization of active power dispatching considering lifetime fatigue load for offshore wind farm based on multi-agent system[C]//IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2019: 2440-2445.
[13]
HOU T, YAO Q, HU Y. Active power dispatching strategy of offshore wind farm based on improved multi-agent system[C]//2020 Chinese Automation Congress (CAC). 2020: 202-207.
[14]
LIAO H, HU W, WU X, et al. Active power dispatch optimization for offshore wind farms considering fatigue distribution[J]. Renewable Energy, 2020, 151: 1173-1185.
[15]
SOLIMAN A, SAYED M M, IBRAHIM D K. Optimized hybrid microgrid of gas generators-wind farm using crow search algorithm[C]//2017 Saudi Arabia Smart Grid (SASG). 2017: 1-6.
[16]
徐蕊. 基于Copula和RAROC模型的社保基金投资风险测度和绩效评价[D]. 大连:东北财经大学,2018.
XU Rui. Investment risk and performance evaluation of Social insurance fund based on Copula and RAROC model[D]. Dalian: Dongbei University of Finance & Economics, 2018.
[17]
薛禹胜,雷兴,薛峰,等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报2014, 34(29): 5029-5040.
XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[18]
林今,孙元章,SøRENSEN P, 等. 基于频域的风电场功率波动仿真:(二)变换算法及简化技术[J]. 电力系统自动化2011, 35(5): 71-76.
LIN Jin, SUN Yuanzhang, SøRENSEN P, et al. Simulation of power fluctuation of wind farms based on frequency domain: Part two transformation algorithm and model simplification[J]. Automation of Electric Power Systems, 2011, 35(5): 71-76.
[19]
叶泽,李湘旗,姜飞,等. 考虑最优弃能率的风光火储联合系统分层优化经济调度[J]. 电网技术2021, 45(6): 2270-2280.
YE Ze, LI Xiangqi, JIANGFei, et al. Hierarchical optimization economic dispatching of combined wind-pv-thermal-energy storage system considering the optimal energy abandonment rate[J]. Power System Technology, 2021, 45(6): 241-251.
[20]
钱峰,陈艺,刘俊磊,等. 大规模风电接入的电力系统协调控制策略[J]. 广东电力2019, 32(11): 12-18.
QIAN Feng, CHEN Yi, LIU Junlei, et al. Coordinatedcontrol strategy for power systems with large-scale wind power integration[J]. Guangdong Electric Power, 2019, 32(11): 12-18.
[21]
刘芸,韩松,黄秋立. 考虑火电深度调峰煤耗特性的随机机组组合[J]. 计算机仿真2021, 38(2): 67-71, 86.
LIU Yun, HAN Song, HUANG Qiuli. Stochastic unit commitment considering coal consumption of thermal units under deep peak regulation[J]. Computer Simulation, 2021, 38(2): 67-71, 86.

基金

国家重点研发计划项目(2019YFE0104800)
河南省自然科学基金项目(202300410271)

PDF(17025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/