100%可再生能源综合能源系统容量优化配置

开赛江, 计力, 周专, 袁铁江, 郭小龙

分布式能源 ›› 2021, Vol. 6 ›› Issue (4) : 34-40.

PDF(1554 KB)
PDF(1554 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (4) : 34-40. DOI: 10.16513/j.2096-2185.DE.2106551
“氢能与可再生能源系统集成控制技术”专题

100%可再生能源综合能源系统容量优化配置

作者信息 +

Capacity Optimal Allocation of Integrated Energy System Consisting of 100% Renewable Energy

Author information +
文章历史 +

摘要

为实现100%可再生能源综合能源系统的安全稳定运行,合理的容量配置至关重要。首先,考虑氢能的利用特性,构建电-热-氢多能耦合的综合能源系统。其次,以运行成本最低和污染物排放量最小为目标,建立一种100%可再生能源综合能源系统的容量优化配置模型,并采用折衷规划和模糊方法构造Pareto前沿对多目标问题进行求解。最后,基于3个不同季节典型日风光出力和电、热、氢负荷特性曲线,通过仿真算例验证所建模型的有效性,并证明氢能的应用能为综合能源系统带来明显的经济效益。

Abstract

In order to realize the safe and stable operation of the 100% renewable energy integrated energy system, reasonable capacity allocation is very important. Firstly, considering the utilization characteristics of hydrogen energy, an integrated energy system with multi-energy coupling of electricity, heat and hydrogen was constructed. Secondly, aiming at the lowest operating cost and minimum pollutant emission, a capacity optimal allocation model of a integrated energy system with 100% renewable energy was established, and the Pareto frontier was constructed by the compromise planning and fuzzy method to solve the multi-objective problem. Finally, based on the characteristic curves of typical diurnal output and electric, thermal and hydrogen loads in three different seasons, the validity of the model is verified by simulation examples, and the application of hydrogen energy can bring obvious economic benefits to the integrated energy system.

关键词

氢能 / 综合能源系统 / 容量优化配置 / 折衷规划 / 多目标优化

Key words

hydrogen energy / integrated energy system / optimal capacity configuration / compromise planning / multi-objective optimization

引用本文

导出引用
开赛江, 计力, 周专, . 100%可再生能源综合能源系统容量优化配置[J]. 分布式能源. 2021, 6(4): 34-40 https://doi.org/10.16513/j.2096-2185.DE.2106551
Saijiang KAI, Li JI, Zhuan ZHOU, et al. Capacity Optimal Allocation of Integrated Energy System Consisting of 100% Renewable Energy[J]. Distributed Energy Resources. 2021, 6(4): 34-40 https://doi.org/10.16513/j.2096-2185.DE.2106551
中图分类号: TK91   

参考文献

[1]
潘光胜,顾伟,张会岩,邱玥. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化2020, 44(23): 1-10.
PAN Guangsheng, GU Wei, ZHANG Huiyan, et al. Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(23): 1-10.
[2]
严嘉伦,林俊光,楼可炜,等. 基于AHP-变异系数法的楼宇型综合能源系统评价体系[J]. 热力发电2019, 48(12): 25-30.
YAN Jialun, LIN Junguang, LOU Kewei, et al. Evaluation system for building integrated energy system based on AHP-CV method[J]. Thermal Power Generation, 2019, 48(12): 25-30.
[3]
潘崇超,金泰,李娜,等. 综合能源系统优化模型综述与文献计量分析[J]. 科学技术与工程2021, 21(11): 4300-4310.
PAN Chongchao, JIN Tai, LI Na, et al. Overview and bibliometric analysis on optimization models of integrated energy system[J]. Science Technology and Engineering, 2021, 21(11): 4300-4310.
[4]
吴仁光,郑立,李凯鹏,等. 面向综合能源配电网的储能系统优化配置方法[J]. 广东电力2020, 30(3): 42-50.
WU Renguang, ZHENG Li, LI Kaipeng, et al. Optimized configuration method of energy storage system for integrated energy distribution network[J]. Guangdong Electric Power, 2020, 30(3): 42-50.
[5]
郭创新,丁筱. 综合能源系统优化运行研究现状及展望[J]. 发电技术2020, 41(1): 2-8.
GUO Chuangxin, DING Xiao. Research status and prospect of optimal operation of integrated energy system[J]. Power Generation Technology, 2020, 41(1): 2-8.
[6]
WANG Xiumei, ZHU Qianying, WANG Yuqing. Optimal allocation of wind-solar storage capacity of microgrid considering carbon emission reduction benefits[C]//IOP Conference Series: Earth and Environmental Science, 2021, 804(3): 032015.
[7]
DONG J, DOU Z, SI S, et al. Optimization of capacity configuration of wind-solar-diesel-storage using improved sparrow search algorithm[J]. Journal of Electrical Engineering and Technology, 2021(4).
[8]
李军徽,张嘉辉,李翠萍,等. 参与调峰的储能系统配置方案及经济性分析[J/OL]. 电工技术学报:1-13[2021-08-10]. https://doi.org/10.19595/j.cnki.1000-6753.tces.200678.
LI Junhui, ZHANG Jiahui, LI Cuiping, et al. Configuration scheme and economic analysis of energy storage system participating in grid peak shaving[J]. Transactions Of China Electrotechnical Society: 1-13[2021-08-10]. https://doi.org/10.19595/j.cnki.1000-6753.tces.200678.
[9]
侯健敏,路新梅,周颖,等. 考虑柔性电负荷和热负荷的综合能源系统容量优化配置[J]. 现代电力2021, 38(4): 412-421.
HOU Jianmin, LU Xinmei, ZHOU Ying, et al. Optimal configuration of integrated energy system capacity considering flexible electrical load and thermal load[J]. Modern Electric Power, 2021, 38(4): 412-421
[10]
吴福保,史如新,桑丙玉,等. 考虑能量成本和污染排放的综合能源系统优化配置[J]. 热力发电2021, 50(2): 10-17.
WU Fubao, SHI Ruxin, SANG Bingyu, et al. Optimization of integrated energy system considering energy cost and pollution emission[J]. Thermal Power Generation, 2021, 50(2): 10-17.
[11]
程林,张靖,黄仁乐,等. 基于多能互补的综合能源系统多场景规划案例分析[J]. 电力自动化设备2017, 37(6): 282-287.
CHENG Lin, ZHANG Jing, HUANG Renle, et al. Case study of multi-scenario planning of integrated energy system based on multi-energy complementation [J]. Electric Power Automation Equipment, 2017, 37(6): 282-287.
[12]
梁浩,张峰,龙惟定. 基于多能互补的区域能源系统优化模型[J]. 暖通空调2012, 42(7): 67-71, 60.
LIANG Hao, ZHANG Feng, LONG Weiding. Regional energy system optimization model based on multi-energy complementarity [J]. Heating Ventilation and Air Conditioning, 2012, 42(7): 67-71, 60.
[13]
齐晓光,姚福星,朱天曈,等. 考虑大规模风电接入的电力系统混合储能容量优化配置[J/OL]. 电力自动化设备:1-9[2021-08-10]. https://doi.org/10.16081/j.epae.202107032.
QI Xiaoguang, YAO Fuxing, ZHU Tiantong, et al. Optimal configuration of hybrid energy storage capacity in power systems considering large-scale wind power integration[J/OL]. Power Automation Equipment: 1-9[2021-08-10]. https://doi.org/10.16081/j.epae.202107032.
[14]
石锦凯,鲍谚,陈振,等. 计及充电负荷不确定性的充电站储能鲁棒优化配置方法[J/OL]. 电力系统自动化:1-16[2021-08-10].
SHI Jinkai, BAO Yan, CHEN Zhen, et al. Robust optimization configuration method of energy storage for charging stations considering charging load uncertainty[J/OL]. Automation of Electric Power Systems: 1-16[2021-08-10].
[15]
帅轩越,王秀丽,黄晶. 多区域综合能源系统互联下的共享储能容量优化配置[J]. 全球能源互联网2021, 4(4): 382-392.
SHUAI Xuanyue, WANG Xiuli, HUANG Jing. Optimal con-figuration of shared energy storage capacity under multiple regional integrated energy systems interconnection[J]. Journal of Global Energy Interconnection, 2021, 4(4): 382-392.
[16]
金泰,李娜,秦建华,等. 基于混合整数非线性规划的综合能源系统优化配置研究[J]. 热力发电2021, 50 (8): 131-140.
JIN Tai, LI Na, QIN Jianhua, et al. Optimization allocation of integrated energy system based on mixed integer nonlinear programming[J]. Thermal Power Generation, 2021, 50(8): 131-140.
[17]
崔杨,闫石,王铮,等. 计及三主体竞价的综合能源系统日前迭代出清策略[J]. 电网技术2020, 44(11): 4164-4174.
CUI Yang, YAN Shi, WANG Zheng, et al. Day-ahead iterative clearing strategy of integrated energy system considering three-agent bidding[J]. Power System Technology, 2020, 44(11): 4164-4174.
[18]
MIAO P, YUE Z, NIU T, et al. Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming[J]. Journal of Cleaner Production, 2020, 281: 124333. :

基金

中央高校基本科研业务费专项资金资助项目(DUT20RC(5)021)
国网新疆电力有限公司技术咨询项目(SGXJJY00GHJS2000068)

PDF(1554 KB)

Accesses

Citation

Detail

段落导航
相关文章

/