PDF(1554 KB)
PDF(1554 KB)
PDF(1554 KB)
100%可再生能源综合能源系统容量优化配置
Capacity Optimal Allocation of Integrated Energy System Consisting of 100% Renewable Energy
为实现100%可再生能源综合能源系统的安全稳定运行,合理的容量配置至关重要。首先,考虑氢能的利用特性,构建电-热-氢多能耦合的综合能源系统。其次,以运行成本最低和污染物排放量最小为目标,建立一种100%可再生能源综合能源系统的容量优化配置模型,并采用折衷规划和模糊方法构造Pareto前沿对多目标问题进行求解。最后,基于3个不同季节典型日风光出力和电、热、氢负荷特性曲线,通过仿真算例验证所建模型的有效性,并证明氢能的应用能为综合能源系统带来明显的经济效益。
In order to realize the safe and stable operation of the 100% renewable energy integrated energy system, reasonable capacity allocation is very important. Firstly, considering the utilization characteristics of hydrogen energy, an integrated energy system with multi-energy coupling of electricity, heat and hydrogen was constructed. Secondly, aiming at the lowest operating cost and minimum pollutant emission, a capacity optimal allocation model of a integrated energy system with 100% renewable energy was established, and the Pareto frontier was constructed by the compromise planning and fuzzy method to solve the multi-objective problem. Finally, based on the characteristic curves of typical diurnal output and electric, thermal and hydrogen loads in three different seasons, the validity of the model is verified by simulation examples, and the application of hydrogen energy can bring obvious economic benefits to the integrated energy system.
氢能 / 综合能源系统 / 容量优化配置 / 折衷规划 / 多目标优化
hydrogen energy / integrated energy system / optimal capacity configuration / compromise planning / multi-objective optimization
| [1] |
潘光胜,顾伟,张会岩,邱玥. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化,2020, 44(23): 1-10.
|
| [2] |
严嘉伦,林俊光,楼可炜,等. 基于AHP-变异系数法的楼宇型综合能源系统评价体系[J]. 热力发电,2019, 48(12): 25-30.
|
| [3] |
潘崇超,金泰,李娜,等. 综合能源系统优化模型综述与文献计量分析[J]. 科学技术与工程,2021, 21(11): 4300-4310.
|
| [4] |
吴仁光,郑立,李凯鹏,等. 面向综合能源配电网的储能系统优化配置方法[J]. 广东电力,2020, 30(3): 42-50.
|
| [5] |
郭创新,丁筱. 综合能源系统优化运行研究现状及展望[J]. 发电技术,2020, 41(1): 2-8.
|
| [6] |
|
| [7] |
|
| [8] |
李军徽,张嘉辉,李翠萍,等. 参与调峰的储能系统配置方案及经济性分析[J/OL]. 电工技术学报:1-13[2021-08-10]. https://doi.org/10.19595/j.cnki.1000-6753.tces.200678.
|
| [9] |
侯健敏,路新梅,周颖,等. 考虑柔性电负荷和热负荷的综合能源系统容量优化配置[J]. 现代电力,2021, 38(4): 412-421.
|
| [10] |
吴福保,史如新,桑丙玉,等. 考虑能量成本和污染排放的综合能源系统优化配置[J]. 热力发电,2021, 50(2): 10-17.
|
| [11] |
程林,张靖,黄仁乐,等. 基于多能互补的综合能源系统多场景规划案例分析[J]. 电力自动化设备,2017, 37(6): 282-287.
|
| [12] |
梁浩,张峰,龙惟定. 基于多能互补的区域能源系统优化模型[J]. 暖通空调,2012, 42(7): 67-71, 60.
|
| [13] |
齐晓光,姚福星,朱天曈,等. 考虑大规模风电接入的电力系统混合储能容量优化配置[J/OL]. 电力自动化设备:1-9[2021-08-10]. https://doi.org/10.16081/j.epae.202107032.
|
| [14] |
石锦凯,鲍谚,陈振,等. 计及充电负荷不确定性的充电站储能鲁棒优化配置方法[J/OL]. 电力系统自动化:1-16[2021-08-10].
|
| [15] |
帅轩越,王秀丽,黄晶. 多区域综合能源系统互联下的共享储能容量优化配置[J]. 全球能源互联网,2021, 4(4): 382-392.
|
| [16] |
金泰,李娜,秦建华,等. 基于混合整数非线性规划的综合能源系统优化配置研究[J]. 热力发电,2021, 50 (8): 131-140.
|
| [17] |
崔杨,闫石,王铮,等. 计及三主体竞价的综合能源系统日前迭代出清策略[J]. 电网技术,2020, 44(11): 4164-4174.
|
| [18] |
|
/
| 〈 |
|
〉 |