PDF(1779 KB)
基于双联流化床的生物质、垃圾、污泥共气化冷热电分布式供能系统性能研究
陈程, 孙衍谦, 郑漪琳, 陈时熠, 吴斌, 向文国
分布式能源 ›› 2021, Vol. 6 ›› Issue (6) : 9-16.
PDF(1779 KB)
PDF(1779 KB)
基于双联流化床的生物质、垃圾、污泥共气化冷热电分布式供能系统性能研究
Research on Performance of Distributed Energy Supply System Based on Co-Gasification of Biomass, Garbage and Sludge in a Dual Fluidized Bed
农林废弃物、生活垃圾和污泥是农村和小城镇地区主要的含能固体废弃物资源,为了将这些废弃物高效就地处理,结合分布式能源系统优势和流化床具有原料适应性强的优点,提出了一种基于双联循环流化床生物质、垃圾、污泥共气化协同冷热电三联产方法。基于热化学平衡的原理,建立了系统模型,对系统的性能和关键参数开展了分析。研究发现:系统发电效率随双联流化床反应器压比的增加先增加后降低,并且在气化过程中的蒸汽/燃料的比值为1.0时各效率达到最大;气化温度对供冷和供暖效率的影响与发电效率不同,随着气化温度升高,发电效率逐渐降低,但是供暖和供冷的总能量利用效率逐渐升高。本文提出的基于双联循环流化床生物质、垃圾、污泥共气化协同冷热电三联产系统,可为小城镇和周边农村生物质、垃圾和污泥等固体废弃物处理提供一种可行的思路。
Agricultural and forestry waste, domestic waste and sludge are the main energy-containing solid waste resources in rural areas and small towns. In order to use these wastes efficiently, this paper proposes a method based on the co-gasification of biomass, garbage, and sludge in a dual circulating fluidized bed with a combined cooling, heating and power generation method. Based on the principle of thermochemical equilibrium, a system model was established to analyze the performance and the effects of key parameters. It can be found that the power generation efficiency of the system first increased and then decreased with the rise of the pressure ratio of the dual fluidized bed reactor, and the efficiency could reach the maximum value when the steam/fuel ratio in the gasification process was 1.0. The effect of gasification temperature on cooling and heating efficiency is different from that of power generation. As the gasification temperature increases, the power generation efficiency gradually decreases, but the total efficiency of heating and cooling gradually increases. The research in this paper provides a feasible pathway for the treatment of solid wastes such as biomass, garbage and sludge in small towns and nearby rural areas.
分布式能源 / 双联流化床气化 / 生物质发电 / 冷热电三联供
distributed energy / dual fluidized bed gasification / biomass power generation / combined cold, heat and electricity supply
| [1] |
张金梦. 平谷推进农林废弃物资源化利用[N]. 中国能源报,2021-09-27(26).
|
| [2] |
蓝星(北京)化工机械有限公司. 技术创新,为农林废弃物处理开辟新的工业化道路[J]. 环境与生活,2021(7): 88-90.
|
| [3] |
郭家磊,肖一帆,李小燕,等. 污水处理固体废弃物污泥的处置方法研究[J]. 再生资源与循环经济,2021, 14(2): 39-40,44.
|
| [4] |
谭艳霞,郭茵,李柏村,等. 市政污泥复合有机废弃物堆肥的研究进展[J]. 当代化工研究,2021(1): 98-100.
|
| [5] |
国旭涛,蔡洁聪,韩高岩,等. 分布式能源技术与发展现状[J]. 分布式能源,2019, 4(1): 52-59.
|
| [6] |
韩中合,祁超,向鹏,等. 分布式能源系统效益分析及综合评价[J]. 热力发电,2018, 47(2): 31-36.
|
| [7] |
董福贵,张也,尚美美. 分布式能源系统多指标综合评价研究[J]. 中国电机工程学报,2016, 36(12): 3214-3223.
|
| [8] |
项敏,李滢. 生物质与生活垃圾混烧发电可行性分析[J]. 资源节约与环保,2017(4): 17, 19.
|
| [9] |
李晓靖. 农村固体废弃物的资源化处理方法及措施[J]. 资源节约与环保,2021(6): 139-140.
|
| [10] |
韦依伶,巩潇,苏光瑞,等. 城市污泥与园林废弃物堆肥混合应用的效果评价[J]. 绿色科技,2018(24): 30-33.
|
| [11] |
张雯,赵婉月,李法庭,等. 寒冷地区天然气冷热电联供系统的优化配置[J]. 山西建筑,2021, 47(17): 147-148.
|
| [12] |
牛天钰,于金辉. 燃气冷热电联供分布式能源系统及其在四川医院建筑中的应用[J]. 发电技术,2020, 41(3): 288-294.
|
| [13] |
余小兵,杨利,居文平,等. 内燃机余热回收冷热电联供系统性能研究[J/OL]. 热力发电:1-7 [2021-09-24].
|
| [14] |
邹泽宇,刘文泽,蔡泽祥. 基于增广ε-约束法的冷热电联供系统容量优化配置[J]. 广东电力,2019, 32(10): 36-44.
|
| [15] |
邵方杰. 分布式能源站三联供系统的应用研究[J]. 科技与创新,2021(11): 180-181.
|
| [16] |
韩东梅,孙干,蒙青山,等. 北京市燃气热电厂冷热电三联供可行性概述[J]. 城市燃气,2021(4): 43-47.
|
| [17] |
尤菲,俱鑫,刘尚科,等. 针对居民随机需求的冷热电联供与传统供能模式优化研究[J]. 智慧电力,2019, 47(11): 73-78, 85.
|
| [18] |
林俊光,顾新壮,董益华,等. 生物质原料分布式气化多联供系统性能研究[J]. 热力发电,2021, 50(9): 101-106.
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |