以新能源为主体的新型电力系统发展路线图

张勋奎

分布式能源 ›› 2021, Vol. 6 ›› Issue (6) : 1-8.

PDF(1012 KB)
PDF(1012 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (6) : 1-8. DOI: 10.16513/j.2096-2185.DE.2106606
学术研究

以新能源为主体的新型电力系统发展路线图

作者信息 +

A Roadmap for Developing a New Power System With New Energy as the Main Body

Author information +
文章历史 +

摘要

当前能源面临短缺、污染和安全三大问题,在碳达峰、碳中和目标指引和政策约束下,新一轮能源革命将呈现四大趋势。结合能源发展的四大趋势,深入分析传统电力系统存在的问题,分析电力系统中电网的作用与定位,阐述了新型电力系统的演进方向。预测了新型电力系统的指标节点、时间进度、重要特征和演进过程,提出了新型电力系统的发展路线图,并探讨了大规模可再生能源开发、电网调峰调频、局域网及微网构建、氢能及其综合利用等新型电力系统的四大支撑技术体系,为能源电力行业构建新型电力系统提供参考与借鉴。

Abstract

At present, energy is facing three major problems: shortage, pollution and safety. Under the guidance of carbon peak, carbon neutralization and policy constraints, the new round of energy revolution will show four major trends. Combined with the four trends of energy development, this paper deeply analyzes the problems of traditional power system, analyzes the role and positioning of power grid in power system, and expounds the evolution direction of new power system. This paper discusses and predicts the index node, time schedule, important characteristics and evolution process of the new power system, puts forward the development roadmap of the new power system, and discusses the four supporting technical systems of the new power system, including large-scale renewable energy development, power grid peak shaving and frequency modulation, local power grid and microgrid construction, hydrogen energy and its comprehensive utilization, provides a reference for the energy and power industry to build a new power system.

关键词

新型电力系统 / 新能源 / 氢能 / 分布式能源 / 发展路线图 / 支撑技术体系

Key words

new power system / new energy / hydrogen energy / distributed energy / development roadmap / supporting technology system

引用本文

导出引用
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源. 2021, 6(6): 1-8 https://doi.org/10.16513/j.2096-2185.DE.2106606
Xunkui ZHANG. A Roadmap for Developing a New Power System With New Energy as the Main Body[J]. Distributed Energy Resources. 2021, 6(6): 1-8 https://doi.org/10.16513/j.2096-2185.DE.2106606
中图分类号: TK-9   

参考文献

[1]
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
[2]
WEI Z. A framework of the carbon-neutral auditing for enterprises in China[J]. American Journal of Industrial & Business Management, 2013, 3(3): 262-265.
[3]
ZOU C, XIONG B, XUE H, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 480-491.
[4]
SKINNER B, MANCARELLA P, VRAKOPOULOU M, et al. Incorporating new power system security paradigms into low-carbon electricity markets[J]. The Electricity Journal, 2020, 33(9): 106837.
[5]
Statistical Review of World Energy 2021[R]. BP, 2021.
[6]
能源安全与国家发展研究中心,北京大学国家发展研究院. 中国能源体制改革研究报告[R]. 北京:北京大学国家发展研究院,2014.
[7]
杜静,薄兵. 中国石化国内常规天然气储采比现状与可持续发展方向[J]. 石油与天然气化工2020, 49(1): 62-66.
DU Jing, BO Bing. Status and sustainable development direction of natural gas reserve-production ratio in sinopec[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 62-66.
[8]
KOONDHAR M A, LI H, WANG H, et al. Looking back over the past two decades on the nexus between air pollution, energy consumption, and agricultural productivity in China: A qualitative analysis based on the ARDL bounds testing model[J]. Environmental Science and Pollution Research, 2020, 27(12): 13575-13589.
[9]
IZUMI Y, IIZUKA A, HO H J. Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry[J]. Journal of Cleaner Production, 2021, 312: 127618.
[10]
ZHU Y, WANG Z, YANG J, et al. Does renewable energy technological innovation control China's air pollution? A spatial analysis[J]. Journal of Cleaner Production, 2020, 250(20): 1-13.
[11]
LI J, WANG L, LIN X, et al. Analysis of China's energy security evaluation system: Based on the energy security data from 30 provinces from 2010 to 2016[J]. Energy, 2020, 198(1): 1-11.
[12]
WANG F, WANG R. The mechanism of driving green growth and decreasing energy security risks by innovation in China[J]. Sustainability, 2021, 13(9): 1-34.
[13]
WANG D, TIAN S, FANG L, et al. A functional index model for dynamically evaluating China's energy security[J]. Energy Policy, 2020, 147: 111706.
[14]
中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报,2021-10-25(001).
[15]
Getting Wind and Sun onto the Grid[R]. IEA, 2017.
[16]
时家林. 努力构建以新能源为主体的新型电力系统[J]. 当代电力文化2021(8): 14-15.
[17]
饶宏. 数字电网推动构建以新能源为主体的新型电力系统[J]. 电力设备管理2021(8): 21-22.
[18]
赵剑波,王蕾. ”十四五”构建以新能源为主体的新型电力系统[J]. 中国能源2021, 43(5): 17-21.
[19]
田廓,董文杰. 需求侧响应及输电约束条件下大规模新能源发电并网机组组合模型[J]. 智慧电力2019, 47(1): 54-58, 71.
TIAN Kuo, DONG Wenjie. Unitcommitment model of large scale new energy generation integrated into grid with demand response resources based on price and transmission capacity constraints[J]. Smart Power, 2019, 47(1): 54-58, 71.
[20]
周勤勇. 如何构建符合“双碳”目标的新型电力系统[J]. 能源2021(10): 28-32.
[21]
QI X, HAN Y. Energy quota trading can achieve energy savings and emission reduction: evidence from China's pilots[J]. Environmental Science and Pollution Research, 2021, 28(37): 52431-52458.
[22]
李明节,陈国平,董存,等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术2019, 43(11): 3979-3986.
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986.
[23]
韩悌,柯贤波,霍超,等. 多直流、高占比新能源电力系统应对严重扰动新技术研究[J]. 智慧电力2020, 48(4): 9-12, 27.
HAN Ti, KE Xianbo, HUO Chao, et al. Newtechnology coping with serious disturbance in power system with multiple DC and high ratio new energy[J]. Smart Power, 2020, 48(4): 9-12, 27.
[24]
杨倩鹏,林伟杰,王月明,等. 火力发电产业发展与前沿技术路线[J]. 中国电机工程学报2017, 37(13): 3787-3794.
YANG Qianpeng, LIN Weijie, WANG Yueming, et al. Industry development and frontier technology roadmap of thermal power generation[J]. Proceedings of the CSEE, 2017, 37(13): 3787-3794.
[25]
杨倩鹏,林伟杰,王月明,等. 发电形式的竞争趋势与替代时间研究[J]. 热力发电2017, 46(5): 1-7.
YANG Qianpeng, LIN Weijie, WANG Yueming, et al. Investigations on competition tendency and substitution time of power generation form[J]. Thermal Power Generation, 2017, 46(5): 1-7.
[26]
WANG Hengtian, YANG Xiaolong, XU Xinxin, et al. Exploring opportunities and challenges of solar PV power under carbon peak scenario in China: A pest analysis[J]. Energies, 2021, 14(11): 3061-3061.
[27]
WANG Weijun, WANG Jixian. Determinants investigation and peak prediction of CO2 emissions in China's transport sector utilizing bio-inspired extreme learning machine[J]. Environmental Science and Pollution Research International, 2021, 28(39): 55535-55553.
[28]
MURADOV N Z, VEZIROGLU T N. ”Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies[J]. International Journal of Hydrogen Energy, 2008, 33(23): 6804-6839.
[29]
MORENO-GONZALEZ M, BERGER A, BORSBOOM-HANSON T, et al. Carbon-neutral fuels and chemicals: Economic analysis of renewable syngas pathways via CO2 electrolysis[J]. Energy Conversion and Management, 2021, 244(7675): 114452.
[30]
李芮. 分布式光伏发展形势及发电模式探究[J]. 太阳能2019(9): 5-8, 14.
[31]
刘泰秀,刘启斌,隋军,等. 基于太阳能热化学的分布式供能系统热力学性能及碳排放分析[J]. 发电技术2020, 41(3): 212-219.
LIU Taixiu, LIU Qibin, SUI Jun, et al. Thermodynamic performance and carbon emission analysis of distributed energy supply system based on solar thermochemistry[J]. Power Generation Technology, 2020, 41(3): 212-219
[32]
黄亚峰,刘思驿,庞松岭,等. 基于自适应权重PSO算法的分布式光伏并网极限容量计算[J]. 广东电力2020, 30(4): 34-40.
HUANG Yafeng, LIU Siyi, PANG Songling, et al. Calculation of ultimate capacity of network on acceptance of distribution PV system based on adaptive weight PSO algorithm[J]. Guangdong Electric Power, 2020, 30(4): 34-40.
[33]
王丽杰. “光伏+”构建多元电力生产格局[J]. 能源科技2021, 8(5): 24-26.
[34]
张路娜,唐宏芬,张舒翔,等. 海上风电机组视情维护与备件管理集成优化[J]. 分布式能源2021, 6(5): 44-50.
ZHANG Luna, TANG Hongfen, ZHANG Shuxiang, et al. Integrated optimization of condition-based maintenance and spare parts management for offshore wind turbines[J]. Distributed Energy, 2021, 6(5): 44-50.
[35]
李鲁,林敬华. 海上风电支撑结构等效疲劳荷载法存在的问题[J]. 南方能源建设2020, 7(): 88-92.
摘要
S1
LI Lu, LIN Jinghua. Problem of equivalent fatigue static load for offshore wind turbine support structure[J]. Southern Energy Construction, 2020, 7(): 88-92.
S1
[36]
孙涛. 场间尾迹簇对风电场发电量和载荷的影响分析[J]. 分布式能源2021, 6(2): 56-60.
SUN Tao. Analysis of influence of cluster wakes between wind farms on wind power generation and load[J]. Distributed Energy, 2021, 6(2): 56-60.
[37]
王志轩. 新型电力系统构建论纲——构建新型电力系统顶层设计思考[J]. 中国电业2021(9): 12-15.
[38]
HAN Aiguo, CHEN Xiaoping, LI Zailiang, et al. Advanced learning-based energy policy and management of dispatchable units in smart grids considering uncertainty effects[J]. International Journal of Electrical Power and Energy Systems, 2021, 132(43): 107188.
[39]
MA Xian, CHEN Rongmin. Industrial internet development strategies and innovative practices for large energy corporation[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(3): 032002.
[40]
朱鸿飞. “双碳”背景下综合能源服务思考[J]. 能源科技2021, 8(5): 48-49.
[41]
LUO S Q, DING X H, HAN T. Day-ahead multi-objective coordinated optimization strategy for regional scale source network load storage system[J]. IOP Conference Series: Earth and Environmental Science, 2021, 702(1): 012042-012051.
[42]
WEI Lin, LIN Wei, ZHANG Zhe, et al. Collaborative control of power system based on source network load storage management[J]. Journal of Physics: Conference Series, 2020, 1635(1): 012040.
[43]
BIN Zhao, XIN Zhang, HUANG Jingjing. AI algorithm-based two-stage optimal design methodology of high-efficiency CLLC resonant converters for the hybrid AC-DC microgrid applications[J]. IEEE Transaction on Industrial Electronics, 2019, 66(12): 9756-9767.
[44]
高扬,贺兴,艾芊. 基于数字孪生驱动的智慧微电网多智能体协调优化控制策略[J]. 电网技术2021, 45(7): 2483-2491.
GAO Yang, HE Xing, AI Qian. Multi agent coordinated optimal control strategy for smart microgrid based on digital twin drive[J]. Power System Technology, 2021, 45(7): 2483-2491.
[45]
PARK H A, BYEON G, SON W, et al. Digital twin for operation of microgrid: Optimal scheduling in virtual space of digital twin[J]. Energies, 2020, 13(20): 5504.
[46]
孙浩,傅金洲,鄢小虎,等. 区域综合能源仿真优化系统的研制[J]. 华电技术2021, 43(4): 8-13.
SUN Hao, FU Jinzhou, YAN Xiaohu, et al. Research and development of integrated community energy simulation-optimization system[J]. Huadian Technology, 2021, 43(4): 8-13.
[47]
吴仁光,郑立,李凯鹏,等. 面向综合能源配电网的储能系统优化配置方法[J]. 广东电力2020, 30(3): 42-50.
WU Renguang, ZHENG Li, LI Kaipeng, et al. Optimized configuration method of energy storage system for integrated energy distribution network[J]. Guangdong Electric Power, 2020, 30(3): 42-50.
[48]
王丽杰,张喜平,冯强,等. 基于云边协同的新能源监控与大数据平台构建[J]. 分布式能源2021, 6(1): 44-50, 55.
WANG Lijie, ZHANG Xiping, FENG Qiang, et al. Construction of new energy monitoring and big data platform based on cloud-side collaboration[J]. Distributed Energy, 2021, 6(1): 44-50, 55.
[49]
张喜平,赵维,王丽杰. 新能源大数据平台物联网数据接入架构设计与实现[J]. 分布式能源2020, 5(6): 33-38.
ZHANG Xiping, ZHAO Wei, WANG Lijie. Design and implementation of data access architecture of internet of things for new energy big data platform[J]. Distributed Energy, 2020, 5(6): 33-38.
[50]
王智,尹楠,杨佳霖. 楼宇型分布式能源系统设备容量和运行策略优化研究[J]. 热科学与技术2020, 19(5): 464-471.
WANG Zhi, YIN Nan, YANG Jialin. Optimal design of operation strategy and equipment capacity for building-type distributed energy system[J]. Journal of Thermal Science and Technology, 2020, 19(5): 464-471.
[51]
熊威,杨彬佑,张睿,等. 基于联盟链的分布式能源交易模型研究[J]. 智慧电力2020, 48(10): 24-29.
XIONG Wei, YANG Binyou, ZHANG Rui, et al. Research on distributed energy trading model based on consortium chain[J]. Smart Power, 2020, 48(10): 24-29.
[52]
王智,尹楠,杨佳霖. 楼宇型分布式能源系统优化设计与敏感性分析[J]. 热力发电2020, 49(3): 45-52.
WANG Zhi, YIN Nan, YANG Jialin. Optimization design and sensitivity analysis of building-type distributed energy system[J]. Thermal Power Generation, 2020, 49(3): 45-52.
[53]
李建林,李光辉,梁丹曦,等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源2021, 6(5): 1-9.
LI Jianlin, LI Guanghui, LIANG Danxi, et al. Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021, 6(5): 1-9.
[54]
张全斌. 基于零碳排放模式的氢气储能应用场景展望[J]. 分布式能源2021, 6(4): 56-62.
ZHANG Quanbin. Perspective on application scenario of hydrogen energy storage based on zero carbon emission[J]. Distributed Energy, 2021, 6(4): 56-62.
[55]
张勋奎,马佳,王国涛,等. 典型北方城市的风能制氢系统方案及其经济性评估[J]. 节能技术2020, 38(3): 221-224, 239.
ZHANG Xunkui, MA Jia, WANG Guotao, et al. Projects of hydrogen producting system utilizing wind energy and its economy evaluation in China northern city[J]. Energy Conservation Technology, 2020, 38(3): 221-224+239.
[56]
柯善超,陈锐,陈刚华,马等. 风电耦合海水淡化制氢技术研究[J]. 分布式能源2021, 6(4): 41-46.
KE Shanchao, CHEN Rui, CHEN Ganghua, et al. Study on hydrogen production technology of wind power coupled seawater desalination[J]. Distributed Energy, 2021, 6(4): 41-46.
[57]
杜忠明. 储氢在新型电力系统中应用的关键问题及建议[J]. 电力设备管理2021(8): 19-20, 28.
[58]
田江南,安源,蒋晶,等. 碳中和背景下的脱碳方案[J]. 分布式能源2021, 6(3): 63-69.
TIAN Jiangnan, AN Yuan, JIANG Jing, et al. Technical solutions for decarburization in context of carbon neutrality[J]. Distributed Energy, 2021, 6(3): 63-69.

基金

海南省重大科技计划项目(ZDKJ2020013)

PDF(1012 KB)

Accesses

Citation

Detail

段落导航
相关文章

/