海上风电涂层防腐型功能助剂研究进展

张丽, 王敏, 曹蕃, 金绪良, 周松, 殷爱鸣, 聂晋峰, 董磊

分布式能源 ›› 2021, Vol. 6 ›› Issue (6) : 53-58.

PDF(1303 KB)
PDF(1303 KB)
分布式能源 ›› 2021, Vol. 6 ›› Issue (6) : 53-58. DOI: 10.16513/j.2096-2185.DE.2106614
应用技术

海上风电涂层防腐型功能助剂研究进展

作者信息 +

Research Progress of Anticorrosive Functional Auxiliaries for Offshore Wind Power Coatings

Author information +
文章历史 +

摘要

海上风电因其高效、清洁、低碳的特点,成为实现“双碳”目标的有效手段,但是极端的海洋腐蚀环境,使得现役海上风电机组面临严峻的考验。海上钢结构防腐以涂层为主,但是现有的涂层防腐体系存在腐蚀介质渗透性强、阴极保护时长短等问题。首先,介绍了常规海上风电防腐涂层体系及原理,对比了涂层防腐中常见的导电型功能助剂及阻隔型功能助剂的作用机制及应用效果;其次,阐明了各类防腐型功能助剂对于涂层防腐性能的影响机制及表征方法;最后,对所阐述的防腐型功能助剂进行总结,并对防腐型功能助剂未来发展进行了展望,以期为海上风电涂层性能的改进研究提供依据。

Abstract

Offshore wind power is critical for peaking carbon emissions and achieving carbon neutrality because of its high efficiency, clean and low carbon characteristics. But the extreme marine corrosion environment make the offshore wind turbine facing severe corrosion. The normal anti-corrosion of offshore steel structure is coatings, but the existing anti-corrosion coatings system has problems such as strong permeability of corrosion medium and short duration of cathodic protection. Firstly, we categorized the conventional offshore wind anti-corrosion coatings system and its principle. Moreover, we analyzed the mechanism and application effect of the conductive function aids and barrier-type functional aids. In addition, the mechanism and characterization method of various types of antiseptic functional additives on the antiseptic properties of coatings were expounded. Finally, the functional preservatives were summarized in this paper, and the future development of functional preservatives was prospected. By this way, we can provide a basis for the improvement investigation of the performance of offshore wind coatings.

关键词

海上风电 / 防腐助剂 / 导电性 / 聚苯胺 / 石墨烯 / 屏蔽作用

Key words

offshore wind power / preservatives / conductivity / polyphenylamine / graphene / shielding

引用本文

导出引用
张丽, 王敏, 曹蕃, . 海上风电涂层防腐型功能助剂研究进展[J]. 分布式能源. 2021, 6(6): 53-58 https://doi.org/10.16513/j.2096-2185.DE.2106614
Li ZHANG, Min WANG, Fan CAO, et al. Research Progress of Anticorrosive Functional Auxiliaries for Offshore Wind Power Coatings[J]. Distributed Energy Resources. 2021, 6(6): 53-58 https://doi.org/10.16513/j.2096-2185.DE.2106614
中图分类号: TK83   

参考文献

[1]
刘佰琼,徐敏,刘晴. 我国海上风电发展的主要问题及对策建议[J]. 海洋开发与管理2015(3): 7-12.
LIU Baiqiong, XU Min, LIU Qing. The main problems and countermeasure suggestions of the development of offshore wind power in China[J]. Ocean Development and Management, 2015(3): 7-12.
[2]
许莉,李锋,彭洪兵. 中国海上风电发展与环境问题研究[J]. 中国人口资源与环境2015, 25(5): 135-138.
XU Li, LI Feng, PENG Hongbing. Research on the development of offshore wind power and environmental issues in China[J]. China Population, Resources and Environment, 2015, 25(5): 135-138.
[3]
李理,范玉鹏,常志明,等. 海洋风电机组防腐蚀技术研究进展[J]. 分布式能源2021, 6(5): 51-58.
LI Li, FAN Yupeng, CHANG Zhiming, et. al., Research on Anti-corrosion Technology of Offshore Wind Turbine[J]. Distributed Energy, 2021, 6(5): 51-58.
[4]
曾伟. 海上风电防腐蚀设计[J]. 全面腐蚀控制2020, 34(6): 97-102.
ZENG Wei. Anti-corrosion design of offshore wind power[J]. Total Corrosion Control, 2020, 34(6): 97-102.
[5]
王焕焕,杜敏. 海洋飞溅区钢结构的防腐蚀技术[J]. 腐蚀科学与防护技术2015, 27(5): 483-491.
WANG Huanhuan, DU Min. Anti-corrosion technology for steel structures in the marine splash zone[J]. Corrosion Science and Protection Technology, 2015, 27(5): 483-491.
[6]
AHUIR-TORRES J I, SIMANDJUNTAK S, BAUSCH N, et al. Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts (tower, foundation, and nacelle/gearbox)[J]. Data Brief, 2019(25):104207.
[7]
李敏,王秀娟,刘宝成,等. 海洋环境防腐蚀玻璃鳞片涂料的研制[J]. 涂料工业2010, 40(1): 49-53.
LI Min, WANG Xiujuan, LIU Baocheng, et. al., Development of epoxy glass flake heavy-duty anti-corrosive coatings used in marine environment[J]. Paint & Coatings Industry, 2010, 40(1): 49-53.
[8]
MOMBER A. Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA)[J]. Materials and Corrosion, 2011, 62(5): 391-404.
[9]
HUGHES J F. Powder coating technology[J]. Journal of Electrostatics, 1989, 23: 3-23.
[10]
谢远伟,黄微波,伯忠维,等. 金属材料表面新型重防腐涂层研究进展及发展趋势[J]. 上海涂料2012, 50(5) : 40-43.
XIE Yuanwei, HUANG Weibo, BO Zhongwei, et al. Research progress and development trend of new heavyduty anti-corrosion coatings on metal materials[J]. Shanghai Coatings, 2012, 50(5): 40-43.
[11]
曲颖. 国内外重防腐涂料现状及发展方向[J]. 化学工业2013, 31(8): 25-34.
QU Ying. The present situation and developing direction of heavy-duty coating at home and abroad[J]. Chemical Industry, 2013, 31(8): 25-34.
[12]
赵如枰. 海上风电基础结构的腐蚀及防护措施[C]//风能产业(2018年12月). 中国农业机械工业协会风力机械分会. 2018: 90-94.
ZHAO Ruping. Corrosion and protective measures for offshore wind power infrastructure[C]//Wind Energy Industry(Dec. 2018). Wind Machinery Branch of China Agricultural Machinery Industry Association, 2018: 90-94.
[13]
任彦忠,王利民,海上风电塔筒防腐系统的选择与运用[J]. 风能2012(4): 72-74.
REN Yanzhong, WANG Limin, Selection and application of offshore wind tower anti-corrosion systems[J]. Wind, 2012(4): 72-74.
[14]
SHARMA N, SHARMA S, SHARMA S K, et al. Evaluation of corrosion inhibition and self healing capabilities of nanoclay and tung oil microencapsulated epoxy coatings on rebars in concrete[J]. Construction and Building Materials, 2020, 259(7): 120278.
[15]
LIN E, PARIZI H B, POURMOUSA A, et al. Coating the inner surfaces of pipes with high-viscosity epoxy in annular flow[J]. Journal of Coatings Technology & Research, 2011, 8(6): 697-706.
[16]
HUSAIN A, AL-BAHAR S, CHAKKAMALAYATH J, et al. Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating[J]. Engineering Failure Analysis, 2015, 56: 375-383.
[17]
LATINO M, VARELA F, TAN Yongjun, et al. The effect of ageing on cathodic protection shielding by fusion bonded epoxy coatings[J]. Progress in Organic Coatings, 2019. 134: 58-65.
[18]
WANG Yanli, YAN Dashuai, ZHU Yanhao et al. Corrosion protection of epoxy coatings containing ZSM-5 zeolites on Mg-Li alloys[J]. Materials and Corrosion, 2019, 70(7): 1222-1229.
[19]
KERESTEN A, OSTANIN S, ZUEV V. Advanced liquid epoxy and polyurethane materials: internal and external coatings for pipeline and tubing protection[J]. E3S Web of Conferences, 2021, 225: 05004.
[20]
TAN Hai, GUO Yanbao, WANG Junqiang et al. The effect of additive particle size on the anti-corrosion behavior of PU coating[J]. Anti-Corrosion Methods and Materials, 2021, 68(1): 36-43.
[21]
SAID A, RACHID H, DRISS C, et al. Investigation of the anti-corrosion properties of Galactomannan as additive in epoxy coatings for carbon steel: Rheological and electrochemical study[J]. Inorganic Chemistry Communications, 2021, 134: 108971.
[22]
MOTAMEDI M, RAMEZANZADEH M, RAMEZANZADEH B, et al. Enhancement of the active/passive anti-corrosion properties of epoxy coating via inclusion of histamine/zinc modified/reduced graphene oxide nanosheets[J]. Applied Surface Science, 2019, 488: 77-91.
[23]
LV Xinding, LI Haotong, DAI Xiaogang, et. al. Micron-scale ultrathin two-dimension zirconia nanosheets towards enhancing anticorrosion performance of epoxy coatings[J]. Tungsten, 2021, 3(4): 459-469.
[24]
MOHAMMAD L S, HOSSAIN Y, MOHAMMAD M, et al. Application of nanoporous cobalt-based ZIF-67 metal-organic framework (MOF) for construction of an epoxy-composite coating with superior anti-corrosion properties[J]. Corrosion Science, 2021, 178: 109099.
[25]
MARYAM A, KHODADADI Y M, ZAHRA R, et al. Anticorrosion performance of electro-deposited epoxy/ amine functionalized graphene oxide nanocomposite coatings[J]. Corrosion Science, 2021, 179: 109143.
[26]
ZHOU Shengguo, WU Yangmin, ZHAO Wenjie, et al. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate[J]. Materials & Design, 2019, 169: 107694.
[27]
SEHRISH H, AMANI H, RAMAZAN K, et al. Self-healing behavior of epoxy-based double-layer nanocomposite coatings modified with Zirconia nanoparticles[J]. Materials & Design, 2021, 207: 109839.
[28]
NARIMAN A, HOSSEIN Y, MOHAMMAD M, et al. Fabrication of MIL-88A sandwiched in graphene oxide nano-composites using a green approach to induce active/barrier protective functioning in epoxy coatings[J]. Journal of Cleaner Production, 2021, 321: 128928.
[29]
IGWEMEZIE V, MEHMANPARAST A, KOLIOS A. Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective[J]. Marine Structures, 2018, 61: 381-397.
[30]
ESI ESHUN M, AMOAKO-TUFFOUR J. A review of the trends in Ghana's power sector[J]. Energy, Sustainability and Society, 2016, 5.
[31]
KIM J W. Design analysis of a cryostable sector magnet for superconducting separated-sector cyclotron[J]. Cryogenics, 2000, 40(1): 53-59.
[32]
IGWEMEZIE V, MEHMANPARAST A, KOLIOS A. Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 181-196.
[33]
FU Jiapeng, ZHOU Qulan, LI Na, et al. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG[J]. Corrosion Science, 2016, 104: 103-111.
[34]
ANUWAR M, JAYAGANTHAN R, TEWARI V K. et al. A study on the hot corrosion behavior of Ti-6Al-4V alloy[J]. Materials Letters, 2006, 61(7): 1483-1488.
[35]
NEVILLE A, WANG C. Erosion-corrosion of engineering steels—Can it be managed by use of chemicals?[J]. Wear, 2009, 267(11): 2018-2026.
[36]
YAMADA K, TOMONO Y, MORIMOTO J. et al. Hot corrosion behavior of boiler tube materials in refuse incineration environment[J]. Vacuum, 2002, 65(3): 533-540.
[37]
NEVILLE A, HODGKIESS T, DALLAS J T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications[J]. Wear, 1995, 186: 497-507.
[38]
SZAKONYI D, URPELAINEN J. Electricity sector reform and generators as a source of backup power: The case of India[J]. Energy for Sustainable Development, 2013, 17(5): 477-481.
[39]
WILLIAMS G, MCMURRAY H N, LOVERIDGE M J. Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments[J]. Electrochimica Acta, 2010, 55(5), 1740-1748.
[40]
DING R, CHEN S, LV J, et. al. Study on graphene modified organic anti-corrosion coatings: A comprehensive review[J]. Journal of Alloys and Compounds, 2019, 806: 611-635.
[41]
徐海东,苗丛丛,卢勇,等. 导电聚苯胺的改性方法及其在防腐涂层中的应用[J/OL]. 化工新型材料2021: 1-7.
XU Haidong, MIAO Congcong, LU Yong, et. al. Modification methods and applications of conductive polyaniline in anti-corrosion coating[J/OL]. New Chemical Materials, 2021: 1-7.
[42]
SATHIYANARAYANAN S, SYED AZIM S, VENKATACHARI G. Corrosion protection coating containing polyaniline glass flake composite for steel[J]. Electrochimica Acta, 2008, 53(5): 2087-2094.
[43]
王翔,吴王平,黄佳琪,等. 金属-石墨烯复合涂层研究进展[J]. 表面技术2021, 50(10): 117-139.
WANG Xiang, WU Wangping, HUANG Jiaqi, et. al. Research progress of metal-graphene composite coatings[J]. Surface Technology, 2021, 50(10): 117-139.
[44]
王磊,丁超,康绍炜,等. 石墨烯改性抗H2S酸性介质高效防腐涂层技术的研究与应用[J]. 电镀与涂饰2021, 40(14): 1101-1109.
WANG Lei, DING Chao, KANG Shaowei, et al. Study and application of graphene-enhanced efficient anticorrosion coating technology for H2S acidic medium[J]. Electroplating & Finishing, 2021, 40(14): 1101-1109.
[45]
宋志强,张依然,宋福如,等. 石墨烯改性防腐涂料研究进展[J]. 广东化工2021, 48(19): 88-91.
SONG Zhiqiang, ZHANG Yiran, SONG Furu, et. al. Research progress of graphene modified anticorrosive coatings[J]. Guangdong Chemical Industry, 2021, 48(19): 88-91.
[46]
DING R, LI W, WANG X, et. al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide[J]. Journal of Alloys and Compounds, 2018, 764: 1039-1055.
[47]
赵明月,裴晓园,王维,等. 二维纳米材料-环氧树脂复合涂层在腐蚀防护中的应用[J/OL]. 复合材料学报2021: 1-13.
ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J/OL]. Acta Materiae Compositae Sinica, 2021: 1-13.
[48]
蒙钊,孟宪谦,姚慧超,等. 碳纤维/纳米材料/环氧树脂多尺度复合材料研究进展[J]. 高科技纤维与应用2017, 42(5): 1-7.
MENG Zao, MENG Xianqian, YAO Huichao, et al. Progress of the study of carbon fiber/nanomaterial/epoxy hierarchical composites[J]. Hi-Tech Fiber & Application, 2017, 42(5): 1-7.
[49]
刘恒豪,孙静,江拥. 碳纳米管对水性环氧富锌防腐涂料防腐性能的影响[J]. 涂料工业2019, 49(8): 23-34.
LIU Henghao, SUN Jing, JIANG Yong. Effect of carbon nanotubes on corrosion resistance of waterborne epoxy zinc rich anticorrosive coatings[J]. Paint &Coatings Industry, 2019, 49(8): 23-34.
[50]
KUMAR S A, BHANDARI H, SHARMA C, et al. A new smart coating of polyaniline-SiO2 composite for protection of mild steel against corrosion in strong acidic medium[J]. Polymer International, 2013, 62(8): 1192-1201.
[51]
RAJITHA K, MOHANA K N S. Synthesis of graphene oxide-based nanofillers and their influence on the anticorrosion performance of epoxy coating in saline medium[J]. Diamond and Related Materials, 2020, 108: 107974.
[52]
欧小琼,吴灿,张博晓,等. 厚浆型水性环氧云铁中间漆的制备及其配套性能研究[J]. 胶体与聚合物2020, 38(4): 172-174.
OU Xiaoqiong, WU Can, ZHANG Boxiao, et al. Preparation of the thick waterborne epoxy micaceous iron oxide intermediate coating and the study of its matching performance[J]. Chinese Journal of Colloid &Polymer, 2020, 38(4): 172-174.

基金

大唐国信滨海海上风力发电有限公司科技项目(CDSTI-SCB[2020]046)

PDF(1303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/