PDF(1512 KB)
PDF(1512 KB)
PDF(1512 KB)
基于小波变换的改进混合蛙跳差分进化神经网络预测模型的短期风速预测
Short-Term Wind Speed Prediction Based on Improved Wavelet Transform and Shuffled Frog Leaping Difference Evolution Neural Network Algorithm
针对目前对风速序列短期预测中不同组合算法预测精度较差、适应性不强等问题,提出一种基于小波变换的组合预测模型算法,将风速序列经小波变换降低波动性与无序性,利用混合蛙跳算法(shuffled frog leaping algorithm,SFLA)优化逆向传播(back propagation,BP)神经网络的初始权值与阈值,将差分进化(difference evolution,DE)算法用于混合蛙跳算法子种群个体寻优策略,提高个体收敛速度与精度。通过将经小波变换分解得到的高、低频分量分别经组合模型算法进行风速预测与重构,通过实例验证,10、30 min相较60 min预测结果平均绝对百分比误差分别提高33.59%、12.21%,均方根误差分别提高28.77%、8.22%,三者平均预测误差分别为0.037、-0.014、0.011 m/s,与混合蛙跳-BP神经网络算法、BP神经网络算法横向对比,结果表明所提组合预测模型算法预测性能指标最佳。
Aiming at the problems of poor prediction accuracy and poor adaptability of different combination algorithms in the current short-term forecasting of wind speed series, this paper proposes a combination forecasting model based on wavelet transform, which reduces the volatility and disorder of wind speed series through wavelet transform. The shuffled frog leaping algorithm(SFLA) is used to optimize the initial weight and threshold of the back propagation(BP) neural network, and the difference evolution(DE) algorithm is used in the SFLA's subpopulation individual optimization strategy which improves the speed and accuracy of individual convergence. The high and low frequency components decomposed by the wavelet transform are respectively used for wind speed prediction and reconstruction through the combined model algorithm. Compared with the 60 min prediction results, the mean absolute percentage errors of 10 min and 30 min were increased by 33.59% and 12.21% respectively, and the root mean square errors were increased by 28.77% and 8.22% respectively. The average prediction errors of the three are 0.037, -0.014, 0.011 m/s, horizontally compared with the SFLA-BP neural network algorithm and the BP neural network algorithm, the results show that the combination forecasting model of this paper predicts the best performance indicators.
风速 / 预测 / 小波变换 / 混合蛙跳算法(SFLA) / 差分进化(DE)算法 / 组合预测模型
wind speed / forecast / wavelet transform / shuffled frog leaping algorithm(SFLA) / difference evolution(DE) algorithm / combination forecasting model
| [1] |
全国新能源消纳监测预警中心,2021年三季度全国新能源电力消纳评估分析[EB/OL][2021-10-29].
|
| [2] |
郑若楠. 基于小波分解的超短期风速混合模型组合预测[J]. 分布式能源,2018, 3(6): 38-46.
|
| [3] |
黄元生,杨磊,高冲,等. 基于经验模态分解和误差校正的短期风速预测[J]. 智慧电力,2020, 48(1): 35-41.
|
| [4] |
李剑楠,乔颖,鲁宗相,等. 大规模风电多尺度出力波动性的统计建模研究[J]. 电力系统保护与控制,2012, 40(19): 7-13.
|
| [5] |
薛禹胜,雷兴,薛峰,等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报,2014, 34(29): 5029-5040.
|
| [6] |
薛禹胜,郁琛,赵俊华,
|
| [7] |
冉靖,张智刚,梁志峰,等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理,2020, 39(6): 1045-1059.
|
| [8] |
章国勇,伍永刚,张洋. 基于集成经验模态分解和量子细菌觅食优化的风速预测模型[J]. 太阳能学报,2015, 36(12): 2930-2936.
|
| [9] |
肖迁,李文华,李志刚,等. 基于改进的小波-BP神经网络的风速和风电功率预测[J]. 电力系统保护与控制,2014, 42(15): 80-86.
|
| [10] |
向玲,李京蓄,王朋鹤,等. 基于VMD-FIG和参数优化GRU的风速多步区间预测[J]. 太阳能学报,2021, 42(10): 237-242.
|
| [11] |
|
| [12] |
崔文华,刘晓冰,王伟,等. 混合蛙跳算法研究综述[J]. 控制与决策,2012, 27(4): 481-486, 493.
|
| [13] |
罗雪晖,杨烨,李霞. 改进混合蛙跳算法求解旅行商问题[J]. 通信学报,2009, 30(7): 130-135.
|
| [14] |
方国华,林泽昕,付晓敏,等. 梯级水库生态调度多目标混合蛙跳差分算法研究[J]. 水资源与水工程学报,2017, 28(1): 69-73, 80.
|
| [15] |
|
| [16] |
杨桦,任震,唐卓尧. 基于小波变换检测谐波的新方法[J]. 电力系统自动化,1997, 21(10): 39-42.
|
/
| 〈 |
|
〉 |