Please wait a minute...
分布式能源  2022, Vol. 7 Issue (1): 1-11    DOI: 10.16513/j.2096-2185.DE.2207101
  学术研究 本期目录 | 过刊浏览 |
基于多尺度分解集成组合模型的碳价格预测研究
王喜平, 于一丁
华北电力大学经济管理系,河北省 保定市 071003
Carbon Price Prediction Based on Multi-Scale Decomposition Integrated Combination Model
WANG Xiping (), YU Yiding 
Department of Economic Management, North China Electric Power University, Baoding 071003, Hebei Province, China
全文: PDF(2731 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)算法对碳价原始序列进行分解,并以综合贡献度指数(comprehensive contribution index,CCI)对分量进行重构,得到短期、长期和趋势分量;然后,采用门限广义自回归条件异方差(threshold generalized auto-regressive conditional heteroscedasticity,TGARCH)模型预测短期分量,以布谷鸟搜索(cuckoo search,CS)算法优化超参数的长短期记忆(long-short term memory,LSTM)神经网络预测长期和趋势分量;在此基础上,采用非线性集成算法对各分量预测结果进行集成,得到最终的碳价预测结果。以湖北碳市场为样本数据进行实证分析,结果表明所构建的预测模型性能最优,预测结果更准确,可为监管部门和企业决策提供有效信息。

关键词: 碳价格预测长短期记忆(LSTM)模型门限广义自回归条件异方差(TGARCH)模型改进型自适应白噪声完备集成经验模态(ICEEMDAN)分解超参数优化    
Abstract

Precise prediction of carbon prices is not only of significance for policy formulation and investment decisions, but also helpful to the carbon finance market development. Considering the non-stationary and nonlinearity characteristics inherent in the carbon price, this study proposed a novel hybrid model named ICEEMDAN-TGARCH/LSTM(CS)-LSTM(CS), in which the ICEEMDAN (improved complete ensemble empirical mode decomposition with adaptive noise) is applied to decompose the carbon price original series into several subcomponents, then the subcomponents are identified according to comprehensive contribution index (CCI) and divided into short-term, long-term and trend components. TGARCH(threshold generalized auto-regressive conditional heteroscedasticity) is chosen for the short-term components forecasting, while LSTM (long-short term memory) neural network model with hyper-parameters optimized by cuckoo search (CS) algorithm is selected to forecast other components and combine all the forecasting sequences. The empirical results Hubei carbon emission trading market indicated that the proposed model outperformed other benchmark models with the lowest prediction error, meaning that the hybrid model proposed by us can be an effective and accurate tool for carbon price forecasting. It provides effective information for regulatory authorities and enterprises to make decisions.

Key Wordscarbon price forecastinglong-short term memory(LSTM) modelthreshold generalized auto-regressive conditional heteroscedasticity (TGARCH) modelimproved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) decompositionhyper-parameters optimization
收稿日期: 2021-12-24
ZTFLH:  TM73  
基金资助:河北省社会科学基金项目(HB19YJ011);
作者简介: 王喜平(1969),女,教授,研究方向为能源经济与可持续发展研究,hdwxp@126.com;|于一丁(1996),男,硕士研究生,研究方向为能源经济学。

引用本文:

王喜平, 于一丁. 基于多尺度分解集成组合模型的碳价格预测研究[J]. 分布式能源, 2022, 7(1): 1-11.
WANG Xiping, YU Yiding. Carbon Price Prediction Based on Multi-Scale Decomposition Integrated Combination Model[J]. Distributed Energy, 2022, 7(1): 1-11.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2207101      或      http://der.tsinghuajournals.com/CN/Y2022/V7/I1/1

图1  LSTM单元的内部结构
Fig.1 Internal structure of the LSTM unit
图2  CS算法的流程图
Fig.2 Flowchart of the CS algorithm
图3  构建的组合模型流程图
Fig.3 Flowchart of the proposed hybrid model
图4  碳价格序列ICEEMDAN分解结果
Fig.4 ICEEMDAN decomposition result of the carbon price series
图5  分量重构结果
Fig.5 The reconstruction modes
表1  MR1的描述性统计指标
Table 1 Descriptive statistics of component MR1
表2  基于ARMA(15,4)-TGARCH(1,2)模型对MR1预测的损失函数
Table 2 Loss functions of ARMA(15,4)-TGARCH(1,2) in forecasting MR1
图6  TGARCH模型对MR1的预测结果
Fig.6 MR1 forecasting result of TGARCH model
表3  MR2分量和R分量的输入变量
Table 3 Input variables of the component MR2 and R
表4  非线性集成方法预测的4个评价指标
Table 4 Four evaluation indicators of nonlinear ensemble method
图7  非线性集成方法的碳价格预测结果
Fig.7 Carbon price forecasting result of nonlinear ensemble method
表5  模型预测效果对比
Table 5 Four evaluation criteria of the various methods
图8  各种方法的预测结果
Fig.8 Forecasting results of the various methods
图9  采用不同方法的预测模型的4个评价指标结果(MAPE、RMSE、MAE、TIC)
Fig.9 Four different evaluation criteria of different methods
[1] JI Q, ZHANG D, GENG J. Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets[J]. Journal of Cleaner Production, 2018(198): 972-978.
[2] ?ANAKO?LU E, ADIYEKE E, A?RALI S. Modeling of carbon credit prices using regime switching approach[J]. Journal of Renewable and Sustainable Energy, 2018, 10(3), 035901.
[3] BYUN S J, CHO H. Forecasting carbon futures volatility using GARCH models with energy volatilities[J]. Energy Economics, 2013(40): 207-221.
[4] DUTTA A. Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk[J]. Journal of Cleaner Production, 2018, 172, 2773-2781.
[5] HAN M, DING L, ZHAO X, et al. Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors[J]. Energy, 2019(171): 69-76
[6] YILDIZ N. Layered feedforward neural network is relevant to empirical physical formula construction: A theoretical analysis and some simulation results[J]. Physics Letters A, 2015, 345(1-3), 69-87.
[7] JIANG L, WU P. International carbon market price forecasting using an integration model based on SVR[C]//2015 International Conference on Engineering Management, Engineering Education and Information Technology.
doi: 10.2991/emeeit-15.2015.61
[8] ZHU B, SHI X, CHEVALLIER J, et al. An adaptive multiscale ensemble learning paradigm for nonstationary and nonlinear energy price time series forecasting[J]. Journal of Forecasting, 2016, 35(7), 633-651.
[9] XU H, WANG M, JIANG S, et al. Carbon price forecasting with complex network and extreme learning machine[J]. Physica A: Statistical Mechanics and its Applications, 2020(545), 122830.
[10] ZHU B, WEI Y. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology[J]. Omega, 2013, 41(3), 517-524
[11] LI W, LU C. The research on setting a unified interval of carbon price benchmark in the national carbon trading market of China[J]. Applied Energy, 2015, 155, 728-739.
[12] LU H, MA X, HUANG K, et al. Carbon trading volume and price forecasting in China using multiple machine learning models[J]. Journal of Cleaner Production, 2010, 249, 119386.
[13] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14, 19-29.
[14] HAO Y, TIAN C. A hybrid framework for carbon trading price forecasting: the role of multiple influence factor[J]. Journal of Cleaner Production, 2010, 262, 120378.
[1] 王喜平,王雪萍. 基于时变Copula-CoVaR的欧盟与国内碳市场风险溢出效应研究[J]. 分布式能源, 2022, 7(2): 8-17.
[2] 卢冬琳, 赵兴勇, 吴海洋. 基于能量分段管理的住宅区能源日前调度策略[J]. 分布式能源, 2021, 6(6): 31-37.
[3] 张渊植. 综合能源系统模型搭建与运行技术研究[J]. 分布式能源, 2021, 6(6): 59-68.
[4] 宁文琴, 杨淑霞. 分时电价下多微电网与微电网群运营比较[J]. 分布式能源, 2021, 6(5): 10-17.
[5] 鄂霖, 马振, 肖宇, 朱永强. 直流配电网的三点估计概率潮流计算方法[J]. 分布式能源, 2021, 6(3): 38-46.
[6] 魏家柱. 基于自适应多目标权重粒子群算法的负荷分配方法研究[J]. 分布式能源, 2020, 5(6): 7-12.
[7] 李杭,王晗,侯恺. 考虑多种能源耦合运行方式的综合能源潮流计算方法[J]. 分布式能源, 2020, 5(4): 8-17.
[8] 臧宝志,吴长龙,朱宏光,魏莘,高建宏,孙艺. 考虑环保与可靠性成本的园区综合能源系统经济运行技术[J]. 分布式能源, 2020, 5(4): 18-27.
[9] 臧宝志, 吴长龙, 朱宏光, 魏莘, 高建宏, 吕倩楠. 电价引导下的电动汽车负荷特性[J]. 分布式能源, 2020, 5(1): 44-51.