基于迁移成分分析的多风电机组运行状态识别方法

李林晏, 韩 爽, 张雅洁, 陈 阳, 李 莉, 潘志强

分布式能源 ›› 2022, Vol. 7 ›› Issue (1) : 12-19.

PDF(2569 KB)
PDF(2569 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (1) : 12-19. DOI: 10.16513/j.2096-2185.DE.2207102
学术研究

基于迁移成分分析的多风电机组运行状态识别方法

作者信息 +

Wind Turbines Operating State Identification Method Based on Transfer Component Analysis

Author information +
文章历史 +

本文亮点

风电机组运行状态识别对风电机组发电性能评估和风电场精细化管理具有重要意义,然而不同风电机组的数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据分布差异明显,如果将已训练好的单台风电机组正常行为模型直接应用于多风电机组运行状态辨识,辨识精度较低。为了提高辨识精度,需要针对每台风电机组正常行为模型进行重复性训练,工作量大。为此,提出了一种基于迁移成分分析(transfer component analysis,TCA)的多风电机组运行状态划分模型。首先,采用基于最大互信息系数和反向传播(back propagation, BP)双隐层神经网络的变量优选方法挖掘风电机组运行状态关键影响变量;然后,以正常运行状态下的优选变量为输入,功率为输出,构建了基于BP双隐层神经网络的风电机组正常行为模型;最后,基于迁移成分分析,构建多风电机组运行状态划分模型。算例结果表明,所提模型可解决不同风电机组数据分布差异的问题,提高运行状态划分模型的精度和效率。

HeighLight

The identification of the operating state of wind turbines is of great significance to the performance evaluation of wind turbines and the refined management of wind farms. However, the supervisory control and data acquisition (SCADA) data distribution of different wind turbines varies significantly. If the trained normal behavior model of single typhoon turbine is directly applied to the operating state identification of multiple wind turbines, the identification accuracy is low. In order to improve the recognition accuracy, it is necessary to conduct repetitive training for each wind turbine normal behavior model, which is a large workload.Therefore, a multi-wind turbines operating state identification model based on transfer component analysis (TCA) is proposed. Firstly, a variable optimization method based on the maximal information coefficient and back propagation (BP) double hidden layer neural network is used to mine the key influencing variables of wind turbine operating status. Then, the normal behavior model of wind turbine based on BP double-hidden layer neural network is constructed with the optimal variables as input and the power as output. Finally, based on transfer component analysis, a multi-wind turbines operation state classification model is constructed. The results show that the proposed model can solve the problem of data distribution differences between different wind turbines and improve the accuracy and efficiency of the operating state partition model.

引用本文

导出引用
Linyan LI, Shuang HAN, Yajie ZHANG, . 基于迁移成分分析的多风电机组运行状态识别方法[J]. 分布式能源. 2022, 7(1): 12-19 https://doi.org/10.16513/j.2096-2185.DE.2207102
Linyan LI, Shuang HAN, Yajie ZHANG, et al. Wind Turbines Operating State Identification Method Based on Transfer Component Analysis[J]. Distributed Energy Resources. 2022, 7(1): 12-19 https://doi.org/10.16513/j.2096-2185.DE.2207102
中图分类号: TK81   

参考文献

[1]
若楠. 数据驱动的风电机组叶片结冰在线检测方法[J]. 分布式能源2019, 4(1): 1-7.
ZHENG Ruonan. On-line detection method of ice on wind turbine blade driven by data[J]. Distributed Energy, 2019, 4(1): 1-7.
[2]
真真立东晓敏,等. 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源2021, 6(3): 70-75.
ZHANG Zhenzhen, WU Lidong, CHEN Xiaomin, et al. Fault diagnosis of windturbine pitch system based on support vector machine[J]. Distributed Energy, 2021, 6(3): 70-75.
[3]
ZHAI Yongjie, WANG Dongfeng, ZHANG Junying, et al. Research on early fault diagnostic method of wind turbines[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(5): 2330-2341.
[4]
LI Jian, LEI Xiao, LI Hui, et al. Normal behavior models for the condition assessment of wind turbine generator systems[J]. Electric Power Components and Systems, 2014, 42(11): 1201-1212.
[5]
德顺巨川,等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报2019, 55(4): 9.
ZHANG Fan, LIU Deshun, DAI Juchuan, et al. An operating condition recognition method of wind turbine based on SCADA parameter relations[J]. Journal of Mechanical Engineering, 2019, 55(4): 9.
[6]
CHENG Yi, HU Yang, SONG Ziqiu. Fuzzy comprehensive evaluation of wind turbine operation condition based on weights calculation via factor analysis[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2019.
[7]
HE Chengbing, MA Li, WANG Runze, et al. Condition evaluation method of wind turbine based on real-time reliability[C]//2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). 2019: 167-172.
[8]
XU Chun, CHEN Yang, LIU Yongqian, et al. Wind turbine operation condition identification method based on variable optimization selection and machine learning[C]//The 10th Renewable Power Generation Conference (RPG 2021), 2021: 1128-1133.
[9]
栋琛浩然,等. 基于深度迁移学习的输电线路故障选相模型及其可迁移性研究[J]. 电力自动化设备2020, 40(10): 165-172.
YANG Yi, FAN Dongchen, YIN Haoran, et al. Transmission line fault phase selection model based on deep-transfer learning and its transferability[J]. Electric Power Automation Equipment, 2020, 40(10): 165-172.
[10]
REN Chao, XU Yan. Transfer learning-based power system online dynamic security assessment: using one model to assess many unlearned faults[J]. IEEE Transactions on Power Systems, 2019, PP(99): 1-1.
[11]
雨涛超凡,等. 基于迁移成分分析的跨域轴承故障分类方法研究[J]. 机电工程2021, 38(5): 7.
LAN Yutao, HU Chaofan, JIN Jing, et al. Cross domain classification method of bearings fault based on transfer component analysis[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(5): 7.
[12]
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
[13]
永前,等. 增量处理双隐层BP神经网络风电功率预测模型[J]. 太阳能学报2015, 36(9): 2238-2244.
HAN Shuang, MENG Hang, LIU Yongqian, et al. Study on optimization of BP neural network wind power prediction model with two hidden layers[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2238-2244.
[14]
延辉. 计及风速时空变化规律的风电功率预测方法研究[D]. 北京:华北电力大学,2019.
QIAO Yanhui. Research on wind power prediction based on wind speed temporal and spatial variation[D]. Beijing: North China Electric Power University, 2019.
[15]
鑫城秀媛. 基于失真数据降噪的数据预处理方法及其在风电功率预测中的应用[J]. 发电技术2020, 41(4): 447-451.
JIN Xincheng, YANG Xiuyuan. Data pre-processing method based on distorted data noise reduction and its application in wind power prediction[J]. Power Generation Technology, 2020, 41(4): 447-451.
[16]
思莹. 基于MEEMD-LSSVM的风电功率超短期预测研究[J]. 智慧电力2020, 48(5): 21-26.
WEI Le, LI Siying. Ultra-short-term forecast for wind power based on MEEMD-LSSV[J]. Smart Power, 2020, 48(5): 21-26.
[17]
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.

基金

国家重点研发计划项目(2018YFB1501105)
国家电网公司山西省电力科学研究院科技项目(SGTYHT/19-JS-215)

PDF(2569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/