基于混合整数线性规则及迭代建模的综合能源系统优化控制

邵宜祥, 过 亮, 蔡国洋, 刘 剑, 郭春岭, 胡丽萍, 孙素娟

分布式能源 ›› 2022, Vol. 7 ›› Issue (1) : 46-53.

PDF(1124 KB)
PDF(1124 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (1) : 46-53. DOI: 10.16513/j.2096-2185.DE.2207106
学术研究

基于混合整数线性规则及迭代建模的综合能源系统优化控制

作者信息 +

Optimal Control of Integrated Energy System Based on Mixed Integer Linear Rules and Iterative Modeling

Author information +
文章历史 +

本文亮点

综合能源网络基于多能源技术的灵活性,可以为地区及更上级的能源系统提供服务。由于非线性因素和建模的复杂性,其运行不确定性在优化控制建模时常常被忽略。为此,提出了一个包含多能源可控装置的综合能源网络优化控制框架。并将改进型混合整数线性规划(mixed integer linear programming,MILP)和非线性网络方程的线性逼近用于该框架的二阶段迭代建模。在MILP优化阶段,基于电功率、热功率和天然气功率均衡等效模型,并引入不确定概率因子,将不确定运行进行集合约束,建立成本最小化的优化目标函数。在第二阶迭代计算阶段,使用非线性综合网络模型,引入微分参数的随机概率因子集合,为提高迭代逼近计算运行效率及可行性,将线性约束独立参数进行动态修正策略引入迭代过程中。最后,所提出的优化控制模型被应用到一个工业园区,实验结果表明,该优化模型算法可以最大化地节约运行能耗成本,确保计算效率的同时能够适应综合能源网络不确定性工况。

HeighLight

Based on the flexibility of multi energy technology, integrated energy network can provide services for regional and higher level energy systems. Due to the nonlinear factors and the complexity of modeling, the operational uncertainty is often ignored in optimal control modeling. Therefore, this paper proposes an integrated energy network optimization control framework including multi energy controllable devices. The improved mixed integer linear programming (MILP) and the linear approximation of nonlinear network equations are applied to the two-stage iterative modeling of the framework. In the MILP optimization stage, based on the power balance equivalent model of electricity, heat and natural gas, and introducing the uncertain probability factor, the uncertain operation is set constrained, and the optimization objective function of cost minimization is established. In the second iteration stage, the nonlinear synthesis network model is used, and the random probability factor set of differential parameters is introduced. In order to improve the efficiency and feasibility of iterative approximation calculation, the dynamic correction strategy of linear constraint independent parameters is introduced into the iteration process. Finally, the proposed optimization control model is applied to an industrial park, and the experimental results show that the optimization model calculation method can maximize the energy consumption cost, ensure the calculation efficiency and adapt to the uncertainty of the integrated energy network.

引用本文

导出引用
Yixiang SHAO, Liang GUO, Guoyang CAI, . 基于混合整数线性规则及迭代建模的综合能源系统优化控制[J]. 分布式能源. 2022, 7(1): 46-53 https://doi.org/10.16513/j.2096-2185.DE.2207106
Yixiang SHAO, Liang GUO, Guoyang CAI, et al. Optimal Control of Integrated Energy System Based on Mixed Integer Linear Rules and Iterative Modeling[J]. Distributed Energy Resources. 2022, 7(1): 46-53 https://doi.org/10.16513/j.2096-2185.DE.2207106
中图分类号: TM28   

参考文献

[1]
GOOD N, CESEA E A M, ZHANG L, et al. Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems[J]. Applied Energy, 2016, 167: 158-172.
[2]
LIU X, MANCARELLA P. Modelling, assessment and sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems[J]. Applied Energy, 2016, 167(1): 336-352.
[3]
BOZCHALUI M C, HASHMI S A, HASSEN H, et al. Optimal operation of residential energy hubs in smart grids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1755-1766.
[4]
HONARMAND M, ZAKARIAZADEH A, JADID S. Self-scheduling of electric vehicles in an intelligent parking lot using stochastic optimization[J]. Journal of the Franklin Institute, 2015, 352(2): 449-467.
[5]
FERNANDES F, MORAIS H, VALE Z, et al. Dynamic load management in a smart home to participate in demand response events[J]. Energy and Buildings, 2014, 82: 592-606.
[6]
ZAKARIAZADEH A, JADID S, SIANO P. Stochastic multi-objective operational planning of smart distribution systems considering demand response programs[J]. Electric Power Systems Research, 2014, 111: 156-168.
[7]
FALSAFI H, ZAKARIAZADEH A, JADID S. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming[J]. Energy, 2014, 64(1): 853-867.
[8]
REN H, GAO W. Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan[J]. Energy and Buildings, 2010, 42(6): 853-861.
[9]
BOZCHALUI M C, SHARMA R. Optimal operation of commercial building microgrids using multi-objective optimization to achieve emissions and efficiency targets[C]//Power & Energy Society General Meeting. IEEE, 2012: 1-8.
[10]
创新. 综合能源系统优化运行研究现状及展望[J]. 发电技术2020, 41(1): 2-8.
GUO Chuangxin, DING Xiao. Research status and prospect of optimal operation of integrated energy system[J]. Power Generation Technology, 2020, 41(1): 2-8.
[11]
宓璐振坤,等. 计及可平移负荷的分布式冷热电联供系统优化运行[J]. 电网技术2018, 42(3): 715-721.
HU Rong, ZHANG Milu, LI Zhenkun. et al. Optimal operation for CCHP system considering shiftable loads[J]. Power System Technology, 2018, 42(3): 715-721.
[12]
潇源. 考虑柔性负荷的多目标安全约束机组组合优化模型及求解[J]. 电网技术2017, 41(6): 1904-1912.
WANG Han, XU Xiaoyuan, YAN Zheng. Multi-objective optimization of security constrained unit commitment model and solution considering flexible load[J]. Power System Technology, 2017(6), pp. 23-27.
[13]
海林,等. 微电网日内调度计划的混合整数规划模型[J]. 电力系统自动化2015, 39(19): 21-27.
SUN Hao, ZHANG Lei, XU Hailin, et al. Mixed integer programming model for microgrid intra-day scheduling[J]. Automation of Electric Power Systems, 2015, 39(19): 21-27.
[14]
CESENA E M, CAPUDER T, MANCARELLA P. Flexible distributed multienergy generation system expansion planning under uncertainty[J]. IEEE Transactions on Smart Grid, 2015, 7(1): 348-357.
[15]
MILAN C, STADLER M, CARDOSO G, et al. Modeling of non-linear CHP efficiency curves in distributed energy systems[J]. Applied Energy, 2015, 148: 334-347.
[16]
陇军,等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术2019, 43(1): 116-126.
ZHU Lan, WANG Ji, TANG Longjun, et al. Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power System Technology, 2019, 43(1): 116-126.
[17]
ZHANG D, DECHEV D. A lock-free priority queue design based on multi-dimensional linked lists[J]. IEEE Transactions on Parallel & Distributed Systems, 2016: 613-626.
[18]
CESEÑA E A M, GOOD N, SYRRI A L A, et al. Technoeconomic and business case assessment of multi-energy microgrids with co-optimization of energy, reserve and reliability services[J]. Applied Energy, 2018, 210: 896-913.
[19]
YAZDANI-DAMAVANDI M, NEYESTANI N, SHAFIE-KHAH M, et al. Strategic behavior of multi-energy players in electricity markets as aggregators of demand side resources using a bi-level approach[J]. IEEE Transactions on Power Systems, 2018, 33(1): 397-411.
[20]
ABDI H, BE IGVAND S D, SCALA M L. A review of optimal power flow studies applied to smart grids and microgrids[J]. Renewable and Sustainable Energy Reviews, 2016, 71: 742-766.
[21]
昕月自伟春辉,等. 考虑风电出力不确定性的综合能源系统鲁棒优化[J]. 智慧电力2020, 48(5): 1-6, 59.
QIU Xinyue, ZHU Ziwei, HUANG Chunhui, et al. Robust optimization of integrated energy system considering uncertainty of wind power output[J]. Smart Power, 2020, 48(5): 1-6, 59.
[22]
厚合撼难,等. 考虑热网传输延迟的电-热综合能源系统鲁棒区间优化调度[J]. 广东电力2019, 32(10): 2-11.
CHEN Houhe, ZHANG Ting, ZHANG Hannan, et al. Optimized scheduling of robust intervals for integrated electricity and district heating systems considering transmission delay of heating networks[J]. Guangdong Electric Power, 2019, 32(10): 2-11.

基金

国家电网公司科技项目(524608140152)

PDF(1124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/