基于时变Copula-CoVaR的欧盟与国内碳市场风险溢出效应研究

王喜平, 王雪萍

分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 8-17.

PDF(1456 KB)
PDF(1456 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 8-17. DOI: 10.16513/j.2096-2185.DE.2207202
学术研究

基于时变Copula-CoVaR的欧盟与国内碳市场风险溢出效应研究

作者信息 +

Risk Spillover Effects of EU and Domestic Carbon Market Based on Time-Varying Copula-CoVaR

Author information +
文章历史 +

本文亮点

Under the background of economic integration, studying the risk spillover effect of domestic and foreign carbon trading markets is of great significance to investment decision-making, risk management and the healthy development of carbon market. This paper studies the dynamic dependency structure of EU and domestic carbon trading market by combining time-varying copula function and generalized auto-regressive conditional heteroscedasticity (GARCH) model. On this basis, it uses copula CoVaR model to study the risk spillover effect of EU carbon market on domestic carbon market. The results show that: (1) The optimal time-varying copula functions depicting the dynamic dependent structure of EU futures market and China's carbon markets in Beijing, Shanghai, Hubei and Shenzhen are different, reflecting the heterogeneous characteristics of China's regional carbon market. (2) Further, based on Copula CoVaR model, the risk spillover effect of EU and domestic carbon market is obtained. It is found that EU futures have risk spillover effect with Beijing, Shanghai and Hubei carbon market, and there is no risk spillover phenomenon with Shenzhen carbon market. Based on the above conclusions, this paper puts forward relevant policy suggestions to prevent carbon market risks.

引用本文

导出引用
王喜平, 王雪萍. 基于时变Copula-CoVaR的欧盟与国内碳市场风险溢出效应研究[J]. 分布式能源. 2022, 7(2): 8-17 https://doi.org/10.16513/j.2096-2185.DE.2207202
Xiping WANG, Xueping WANG. Risk Spillover Effects of EU and Domestic Carbon Market Based on Time-Varying Copula-CoVaR[J]. Distributed Energy Resources. 2022, 7(2): 8-17 https://doi.org/10.16513/j.2096-2185.DE.2207202
中图分类号: TM73   

参考文献

[1]
. 基于面板向量自回归模型的碳排放权市场与原油市场相关性分析[J]. 商学研究2020, 27(6): 89-95, 109.
DU Jun, TONG Yao. Correlation analysis between carbon emission right market and crude oil market based on panel vector autoregressive model[J]. Business Studies, 2020, 27(6): 89-95, 109.
[2]
春华,我国碳排放权交易市场与股票市场联动性研究[J]. 北京交通大学学报(社会科学版), 2015, 14(4): 41-51.
TAO Chunhua. Research on the linkage between China's carbon emission trading market and stock market[J]. Journal of Beijing Jiaotong University (Social Science Edition), 2015, 14(4): 41-51.
[3]
大宇. 联合国气候谈判背景下碳市场间联动效应研究—以EUA和CER市场为例[J]. 生态经济2020, 36(6): 19-26.
XU Yue, ZHAI Dayu. Research on the linkage effect between carbon markets in the context of UN climate negotiations— Taking EUA and CER markets as an example[J]. Ecological Economy, 2020, 36(6): 19-26.
[4]
FENG Y S, LING M J. Cross-correlation analysis of crude oil and new energy markets: A new perspective based on carbon emission market[J]. Ecological Economy, 2019, 15(1): 2-18.
[5]
LU W, WANG W. Dynamic correlation between carbon market and Chinese stock market based on AGDCC-GARCH[C]//International Conference on Management Science& Engineering, Moscow, Russia: 1, 2009: 779-784.
[6]
. 碳市场、石油市场和股票市场之间的动态相关性研究[J]. 南京财经大学学报2014, 32(3): 9-14.
LI Gang, ZHU Li. Study on the dynamic correlation among carbon market, oil market and stock market[J]. Journal of Nanjing University of Finance and economics, 2014, 32(3): 9-14.
[7]
清霞. 我国碳交易市场与化石能源市场间的动态相关性研究—基于DCC-(BV) GARCH模型的检验[J]. 环境与可持续发展2016, 5: 26-29.
GAO Qingxia, LI Fang. Study on the dynamic correlation between China's carbon trading market and fossil energy market—a test based on DCC-(BV) GARCH model[J]. Environment and Sustainable Development, 2016, 5: 26-29.
[8]
小辉宝臣. 欧盟排放交易体系与化石能源市场动态关系研究[J]. 资源科学2014, 36(7): 1443-1451.
HAI Xiaohui, YANG Baochen. Study on the dynamic relationship between EU Emission Trading System and fossil energy market[J]. Resource Science, 2014, 36(7): 1443-1451.
[9]
晓宇东坤桂馨. 国内外碳交易市场价格联动性分析—基于DCC-GARCH模型[J]. 生态经济2017, 33(8): 48-51, 89.
WANG Xiaoyu, LUO Dongkui, JIE Guixin. Price linkage analysis of domestic and foreign carbon trading markets—Based on DCC-GARCH model[J]. Ecological Economy, 2017, 33(8): 48-51, 89.
[10]
喜平雪萍. 欧盟和国内碳交易市场的相依结构及风险溢出效应研究[J]. 工业技术经济2021(7): 73-80.
WANG Xiping, WANG Xueping. Study on the dependent structure and risk spillover effect of EU and domestic carbon trading market[J]. Industrial Technology Economy, 2021(7): 73-80.
[11]
笙凯. 中国碳市场风险溢出效应研究[D]. 西安:西安科技大学,2021.
ZHAO Shengkai. Research on risk spillover effect of China's carbon market[D]. Xi'an: Xi'an University of Science And Technology, 2021
[12]
海员. 汇率与股市相关行业的风险溢出效应—基于静态与动态CoVaR的分析[J]. 中南财经政法大学学报2017(6): 112-121.
YIN Haiyuan. Risk spillover effect of exchange rate and stock market related industries—Analysis based on static and dynamic Covar[J]. Journal of Zhongnan University of Economics and Law, 2017(6): 112-121.
[13]
ZHU B Z, HUANG L Q, YUAN L L, et al. Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach[J]. International Review of Economics and Finance, 2020(67): 163-175.
[14]
GIRARDI G, ERGUN A T. Systemic risk measurement: Multivariate GARCH estimation of CoVaR[J]. Journal of Banking & Finance, 2013(37): 3169-3180.
[15]
国斌. 互联网金融市场系统性风险度量—基于GARCH-CoVaR模型的分析[J上海商学院学报2021, 22(3): 63-77.
FANG Guobin, CHEN Jing. Systematic risk measurement of Internet financial market—Analysis based on GARCH-Covar model[J]. Journal of Shanghai Business School, 2021, 22(3): 63-77.
[16]
子平. 基于CoVaR方法对中国系统重要性银行的实证研究——GARCH模型和分位数回归方法的对比分析[J]. 金融与经济2014(11): 11-16, 45.
DU Ziping, LI Jin. Empirical study on China's systemically important banks based on CoVaR method—Comparative analysis of GARCH model and quantile regression method[J]. Finance and economy, 2014(11): 11-16, 45.
[17]
YUAN N N, LU Y. Asymmetric risk spillover between financial market uncertainty and the carbon market: A GAS-DCS-copula approach[J]. Journal of Cleaner Production, 2020(259): 120750.
[18]
XU Y Y. Risk spillover from energy market uncertainties to the Chinese carbon market[J]. Pacific-Basin Finance Journal, 2021, 67.
[19]
LI T, ZHANG Z G, ZHAO L T. Estimating the portfolio risk with Copula-GARCH-EVT Method: Empirical study of carbon market[J]. Advanced Materials Research, 2013, 791-793: 2175-2178.
[20]
XU Yingying. Risk spillover from energy market uncertainties to the Chinese carbon market[J]. Pacific-Basin Finance Journal, 2021, 67.
[21]
NELSON K G, DANIEL B. Conditional heteroskedasticity in asset returns: A new approach[J]. Econometrica, 1991, 59(2): 347-370.

基金

河北省社会科学基金项目(HB19YJ011)

PDF(1456 KB)

Accesses

Citation

Detail

段落导航
相关文章

/