风力发电机组叶根弯矩自动化标定算法

兰杰, 林淑, 岳伟, 王其君, 赵伟

分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 50-55.

PDF(2975 KB)
PDF(2975 KB)
分布式能源 ›› 2022, Vol. 7 ›› Issue (2) : 50-55. DOI: 10.16513/j.2096-2185.DE.2207207
应用技术

风力发电机组叶根弯矩自动化标定算法

作者信息 +

Automatic Calibration of Wind Turbine Balde Root Bending Moment

Author information +
文章历史 +

本文亮点

In order to improve the measuring accuracy of blade root bending moment, an automatic calibration process and algorithm for wind turbine blade root stress were proposed. When the wind is light, the wind turbine is controlled to idle without grid connection, and the blades are fixed at different pitch angles, and different bending moments are generated by the blade gravity in the blade root coordinate system, so as to obtain the calibration input. Based on the assumption of linear measurement, the calibration coefficient and central wavelength are obtained by linear regression method. Taking a domestic 7 MW large offshore wind turbine as an example, the simulation results verify that the errors of the selected calibration conditions meet the design requirements. At the same time, the method is applied to the field test data, and the accuracy is verified by the test data. The test results prove the validity of the calibration process and the algorithm.

引用本文

导出引用
兰杰, 林淑, 岳伟, . 风力发电机组叶根弯矩自动化标定算法[J]. 分布式能源. 2022, 7(2): 50-55 https://doi.org/10.16513/j.2096-2185.DE.2207207
Jie LAN, Shu LIN, Wei YUE, et al. Automatic Calibration of Wind Turbine Balde Root Bending Moment[J]. Distributed Energy Resources. 2022, 7(2): 50-55 https://doi.org/10.16513/j.2096-2185.DE.2207207
中图分类号: TK83   

参考文献

[1]
学勤维庆海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报2020, 41(10): 229-235.
YAN Xueqin, WANG Weiqing, WANG Haiyun. Research on individual pitch control strategy of wind turbine based on IQPI-R[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 229-235.
[2]
凌翔郎军,等. 基于鲸鱼群算法的PID独立变桨控制参数整定方法[J]. 船舶工程2020, 42(): 550-553, 557.
摘要
S1
ZENG Bing, HUANG Lingxiang, PENG Langjun, et al. Parameter tuning method of PID individual pitch control based on whale swarm algorithm[J]. Ship Engineering, 2020, 42(): 550-553, 557.
S1
[3]
学勤维庆海云. 降低风力机叶轮载荷独立变桨距控制策略[J]. 可再生能源2019, 37(8): 1241-1246.
YAN Xueqin, WANG Weiqing, WANG Haiyun. Individual pitch control for decreasing wind turbines of rotor load[J]. Renewable Energy Resources, 2019, 37(8): 1241-1246.
[4]
敏楠,等. 海上浮式风力机叶片减载及平台运动控制研究[J]. 热能动力工程2020, 35(9): 120-126.
WANG Bo, LI Chun, YU Minnan, et al. Platform motion control and blades load reduction for floating offshore wind turbines[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(9): 120-126.
[5]
湘明树平. 风电机组Ⅱ区功率与叶片气动载荷协同控制[J]. 沈阳工业大学学报2017, 39(1): 6-11.
WANG Xiangming, REN Shuping. Cooperative control for Ⅱ district power of wind turbine and aerodynamic load of blades[J]. Journal of Shenyang University of Technology, 2017, 39(1): 6-11.
[6]
煜锋宝康高阳,等. 大型风力发电机组复杂地形下整机运行载荷测试及优化分析[J]. 机械传动2017, 41(8): 145-149.
WEI Yufeng, CHEN Baokang, YU Gaoyang, et al. Analysis of whole machine running load test and optimization of large wind turbine under complex terrain[J]. Journal of Mechanical Transmission, 2017, 41(8) : 145-149.
[7]
春雷. 基于叶根载荷的风力发电机组风剪切强度分析[J]. 机械设计与研究2020, 36(4): 220-224.
ZHOU Chunlei, YU Rui. Research on wind shear strength of wind turbine based on blade root load[J]. Machine Design & Research, 2020, 36(4): 220-224.
[8]
,等. 风力发电机组塔架减振控制策略设计[J]. 分布式能源2021, 6(3): 55-62.
LAN Jie, LIN Shu, FU Bin, et al. Wind turbine tower vibration reduction control strategy design[J]. Distributed Energy, 2021, 6(3): 55-62.
[9]
荣国. 基于IEC标准的风力发电机组机械载荷测量的研究[D]. 重庆:重庆大学,2012.
LI Rongguo. Research of wind turbines' measurement of mechanical loads based on IEC standard[D]. Chongqing: Chongqing University, 2012.
[10]
. 大型风力发电机组载荷测试研究[D]. 沈阳:沈阳工业大学,2014.
SHAO Shuai. Research on large-scale wind turbine for load measurement[D]. Shengyang: Shengyang University of Technology, 2014.
[11]
德义世耀. MW级风力发电机组载荷测试方法研究[J]. 可再生能源2013, 31(3): 65-68.
FU Deyi, XUE Yang, QIN Shiyao. Research on load measurement of the mega watt scale wind turbine[J]. Renewable Energy Resources, 2013, 31(3): 65-68.
[12]
国庆占华国军. 一种风电机组叶片机械载荷标定方法的研究[J]. 风能2013(10): 70-74.
LI Guoqing, XU Zhanhua, ZHANG Guojun. Research on the blade mechanical load calibration method[J]. Wind Energy, 2013(10): 70-74.
[13]
德义世耀,等. 风力发电机组载荷测试叶根弯矩信号标定方法研究[J]. 可再生能源2013, 31(10): 67-69, 74.
FU Deyi, QIN Shiyao, XUE Yang, et al. Research on calibration of blade root bending signal at wind turbine load measurement[J]. Renewable Energy Resources, 2013, 31(10): 67-69, 74.
[14]
巨川,等. 基于“应变-载荷”模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报2019, 40(5): 1423-1432.
WANG Chao, DAI Juchuan, YANG Xin, et al. Research on blade load identification of large-scale wind turbines based on “stress-load” model[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1423-1432.
[15]
DNV GL-Energy. Bladed theory manual version 4.8[R].
[16]
Guideline for the certification of wind turbines edition 2010[S].

基金

四川省德阳市科技计划项目(2020CKC002)

PDF(2975 KB)

Accesses

Citation

Detail

段落导航
相关文章

/